中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

7.3 萬有引力理論的成就課件(共27張PPT)+素材

資源下載
  1. 二一教育資源

7.3 萬有引力理論的成就課件(共27張PPT)+素材

資源簡介

(共27張PPT)
第3節
萬有引力理論的成就
第七章
萬有引力與宇宙航行
2020-2021學年度人教版高中物理必修2
1.
理解“稱量地球質量”的基本思路,了解萬有引力定律在天文學上的重要應用。
2.
理解計算太陽質量的基本思路,能將天體問題中的對象和過程轉換成相關模型后進行求解。
3.
認識萬有引力定律的科學成就,體會科學的迷人魅力,進一步認識運動與相互作觀念。
學習目標
目錄
01
“稱量”地球的質量
02
“稱量”太陽的質量
03
計算天體的密度
04
發現未知天體
05
預言哈雷彗星回歸
學習目錄
問題:你知道人們是如何測量出地球的質量嗎?
新課導入
“給我一個支點,我可以撬動地球?!?br/>——阿基米德
疑惑:地球質量約為6×1024kg,設杠桿支點距離地球1m,阿基米德在另一端能產生的作用力為600N,根據杠桿原理可知杠桿大約長1億光年。阿基米德能做到嗎?
阿基米德的設想
一、“稱量”地球的質量
θ
Fn
R
M
G
m
w
r
F引
物體m在緯度為θ的位置,萬有引力指向地心,分解為兩個分力:m隨地球自轉圍繞地軸運動的向心力和重力。
重力是萬有引力的一個分力,當忽略了地球的自轉時,可認為重力在數值上就等于萬有引力大小。
你有何感想?
探究新知
一、“稱量”地球的質量
1.理論分析:若不考慮地球自轉的影響,地面上物體的重力等于地球對它的引力。
M=
代入數據:
2.數據驗證
其中g、R在卡文迪許之前已經知道,而卡文迪許測出G后,就意味著我們也測出了地球的質量。卡文迪許被稱為“第一個稱出地球質量的人”。
卡文迪許
啟發:
只要知道某星球表面的重力加速度g和星球半徑R,就可以估算出星球的質量。我們將此方法稱為“g、R”法。
方法一:重力加速度法(g、R)
一、“稱量”地球的質量
R
r
r=R+h
h
緯度越大,g越大
高度越大,g越小
一、“稱量”地球的質量
二、“稱量”太陽的質量
問題:前面測量地球質量,但是如果要測太陽的質量,我們又無法在太陽表面做落體運動,還有沒有其他辦法呀?
八大行星圍繞太陽運動,太陽為中心天體。思考:行星做圓周運動的向心力是什么?
近似
r
M
m
F
問題:地球作圓周運動的向心力是由什么力提供的?
二、“稱量”太陽的質量
驗證:把地球繞太陽的公轉看作是勻速圓周運動,已知軌道半徑約為1.5×1011
m,引力常量G=6.67×10-11
N·m2/kg2,估算太陽的質量。
二、“稱量”太陽的質量
驗證:已知月球繞地球周期T=27.3天,月地平均距r=3.84×108m,引力常量G=6.67×10-11
N·m2/kg2,試估算地球的質量。
忽略太陽及其他天體對月球的引力。
二、“稱量”太陽的質量
中心天體M
環繞天體m
求解思路:
環行天體的向心力由中心天體對其萬有引力獨家提供
具體方法:
注意:待求天體(M)的質量與環行天體(m)的質量無關
方法二:環繞法(T、r)
注意:環繞法只能求出中心天體的質量。
二、“稱量”太陽的質量
方法三:v、r法:若知道地球繞太陽的公轉線速度v和軌道半徑r,能否估算太陽的質量?
方法四:ω、r法:若知道地球繞太陽的公轉角速度ω和軌道半徑r,能否估算太陽的質量?
方法四:T、r法:若知道地球繞太陽的公轉線速度v和公轉周期T,能否估算太陽的質量?
開拓思路
二、“稱量”太陽的質量
三、計算天體的密度
問題:如何計算天體密度?
基本思路:
g、R法
T、r法
同理:可用v-r、ω-r、v-T等求質量的方法求天體的密度。
r=R
四、發現未知天體
海王星
預見并發現未知行星,是萬有引力理論威力和價值的最生動例證.
在1781年發現的第七個行星—天王星的運動軌道,總是同根據萬有引力定律計算出來的有一定偏離.當時有人預測,肯定在其軌道外還有一顆未發現的新星,這就是后來發現的第八大行星—海王星.
海王星的實際軌道由英國劍橋大學的學生亞當斯和法國年輕的天文愛好者勒維耶根據天王星的觀測資料各自獨立地利用萬有引力定律計算出來的.
海王星發現之后,人們發現它的軌道也與理論計算的不一致。于是幾位學者用亞當斯和勒維耶列的方法預言另一顆行星的存在。
在預言提出之后,1930年3月14日,湯博發現了這顆行星——冥王星。
四、發現未知天體
英國劍橋大學的學生亞當斯和法國年輕的天文學家勒維耶相信未知行星的存在。他們根據天王星的觀測資料,各自獨立地利用萬有引力定律計算出這顆“新”行星的軌道。1846

9

23
日晚,德國的伽勒在勒維耶預言的位置附近發現了這顆行星,人們稱其為“筆尖下發現的行星”——海王星。
四、發現未知天體
五、預言哈雷彗星回歸
哈雷依據萬有引力定律,用一年時間計算了它們的軌道。發現
1531
年、1607
年和
1682
年出現的這三顆彗星軌道看起來如出一轍,他大膽預言,這三次出現的彗星是同一顆星(圖
7.3-3),周期約為
76
年,并預言它將于
1758
年底或
1759
年初再次回歸。1759

3
月這顆彗星如期通過了近日點,它最近一次回歸是
1986
年,它的下次回歸將在2061
年左右。
二、“稱量”太陽的質量
三、計算天體的密度
五、預言哈雷彗星的回歸
一、“稱量”地球的質量
四、發現未知天體
課堂小結
1.若有一星球密度與地球密度相同,它表面的重力加速度是地球表面重力加速度的3倍,則該星球質量是地球質量的(  )
A.
27倍
B.
3倍
C.
0.5倍
D.
9倍
A
課堂練習
2.土星最大的衛星叫“泰坦”(如圖),每16天繞土星一周,其公轉軌道半徑為1.2×106km.已知引力常量G=6.67×10-11N·m2/kg2,則土星的質量約為(  )
A.
5×1017kg
B.
5×1026kg
C.
7×1033kg
D.
4×1036kg
B
3.已知引力常量G、月球中心到地球中心的距離R和月球繞地球運行的周期T,僅利用這三個數據,可以估算出的物理量有(  )
A.
月球的質量
B.
地球的質量
C.
地球的半徑
D.
地球的密度
B
4.(多選)(2019·西安高級中學期中)已知下列哪組數據,可以算出地球的質量M(引力常量G已知)(  )
A.
月球繞地球運動的周期T1及月球到地球中心的距離R1
B.
地球繞太陽運行的周期T2及地球到太陽中心的距離R2
C.
人造地球衛星在地面附近的運行速度v3和運行周期T3
D.
地球繞太陽運行的速度v4及地球到太陽中心的距離R4
AC
謝謝聆聽

展開更多......

收起↑

資源列表

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 巴马| 宜丰县| 杭州市| 东台市| 淮安市| 临颍县| 滁州市| 信丰县| 肇东市| 宁都县| 三江| 穆棱市| 西和县| 建宁县| 岗巴县| 卢龙县| 鲁甸县| 壶关县| 晋江市| 莱州市| 万山特区| 陵水| 探索| 安徽省| 铁岭县| 三河市| 寻甸| 海晏县| 永城市| 葵青区| 衡阳县| 化德县| 子长县| 修水县| 张北县| 和林格尔县| 满城县| 阿瓦提县| 开封县| 旌德县| 普兰店市|