資源簡介 第一章 宇宙1.2 恒星的位置和星空觀察相關素材[21世紀教育網]大小 恒星的真直徑可以根據恒星的視直徑(角直徑)和距離計算出來。常用的干涉儀或月掩星方法可以測出小到0.01的恒星的角直徑,更小的恒星不容易測準,加上測量距離的誤差,所以恒星的真直徑可靠的不多。根據食雙星兼分光雙星的軌道資料,也可得出某些恒星直徑。對有些恒星,也可根據絕對星等和有效溫度來推算其真直徑。用各種方法求出的不同恒星的直徑,有的小到幾公里量級,有的大到10公里以上。 恒星的大小相差也很大 , 有的是巨人 , 有的是侏儒。地球的直徑約為 13000 千米 , 太陽的直徑是地球的 109 倍。巨星是恒星世界中個頭最大的 , 它們的直徑要比太陽大幾十到幾百倍。超巨星就更大了 , 紅超巨星心宿二 ( 即天揭座α ) 的直徑是太陽的 600 倍;紅超巨星參宿四 ( 即獵戶座α ) 的直徑是太陽的 900倍 , 假如它處在太陽的位置上 , 那么它的大小幾乎能把木星也包進去。它們還不算最大的 , 仙王座 VV 是一對雙星 , 它的主星 A 的直徑是太陽的 1600 倍;HR237 直徑為太陽的 1800倍。還有一顆叫做柱一的雙星 , 其伴星比主星還大 , 直徑是太陽的 2000-3000 倍。這些巨星和超巨星都是恒星世界中的巨人。 看完了恒星世界中的巨人,我們再來看看它們當中的侏儒。在恒星世界當中,太陽的大小屬中等,比太陽小的恒星也有很多,其中最突出的要數白矮星和中子星了。白矮星的直徑只有幾千千米,和地球差不多,中子星就更小了,它們的直徑只有 20 千米左右,白矮星和中子星都是恒星世界中的侏儒。我們知道,一個球體的體積與半徑的立方成正比。如果拿體積來比較的話,上面提到的柱一就要比太陽大九十多億倍,而中子星就要比太陽小幾百萬億倍。由此可見, 巨人與侏儒的差別有多么懸殊。 質量 只有特殊的雙星系統才能測出質量來,一般恒星的質量只能根據質光關系等方法進行估算。已測出的恒星質量大約介于太陽質量的百分之幾到120倍之間,但大多數恒星的質量在0.1~10個太陽質量之間。恒星的密度可以根據直徑和質量求出,密度的量級大約介于10克/厘米(紅超巨星)到 10~10克/厘米(中子星)之間。 恒星表面的大氣壓和電子壓可通過光譜分析來確定。元素的中性與電離譜線的強度比,不僅同溫度和元素的豐度有關,也同電子壓力密切相關。電子壓與氣體壓之間存在著固定的關系,二者都取決于恒星表面的重力加速度,因而同恒星的光度也有密切的關系。 根據恒星光譜中譜線的塞曼分裂(見塞曼效應)或一定波段內連續譜的圓偏振情況,可以測定恒星的磁場。太陽表面的普遍磁場很弱,僅約1~2高斯,有些恒星的磁場則很強,能達數萬高斯。白矮星和中子星具有更強的磁場。 [21世紀教育網]化學組成 與在地面實驗室進行光譜分析一樣,我們對恒星的光譜也可以進行分析,借以確定恒星大氣中形成各種譜線的元素的含量,當然情況要比地面上一般光譜分析復雜得多。多年來的實測結果表明,正常恒星大氣的化學組成與太陽大氣差不多。按質量計算,氫最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、鎂、鐵、硫等。但也有一部分恒星大氣的化學組成與太陽大氣不同,例如沃爾夫-拉葉星,就有含碳豐富和含氮豐富之分(即有碳序和氮序之分)在金屬線星和A型特殊星中,若干金屬元素和超鈾元素的譜線顯得特別強。但是,這能否歸結為某些元素含量較多,還是一個問題。 理論分析表明,在演化過程中,恒星內部的化學組成會隨著熱核反應過程的改變而逐漸改變,重元素的含量會越來越多,然而恒星大氣中的化學組成一般卻是變化較小的。 物理特性的變化 觀測發現,有些恒星的光度、光譜和磁場等物理特性都隨時間的推移發生周期的、半規則的或無規則的變化。這種恒星叫作變星。變星分為兩大類:一類是由于幾個天體間的幾何位置發生變化或恒星自身的幾何形狀特殊等原因而造成的幾何變星;一類是由于恒星自身內部的物理過程而造成的物理變星。 幾何變星中,最為人們熟悉的是兩個恒星互相繞轉(有時還有氣環或氣盤參與)因而發生變光現象的食變星(即食雙星)。根據光強度隨時間改變的“光變曲線”,可將它們分為大陵五型、天琴座β(漸臺二)型和大熊座W型三種幾何變星中還包括橢球變星(因自身為橢球形,亮度的變化是由于自轉時觀測者所見發光面積的變化而造成的)、星云變星(位于星云之中或之后的一些恒星,因星云移動,吸光率改變而形成亮度變化)等。可用傾斜轉子模型解釋的磁變星,也應歸入幾何變星之列。 物理變星,按變光的物理機制,主要分為脈動變星和爆發變星兩類。脈動變星的變光原因是:恒星在經過漫長的主星序階段以后(見赫羅圖),自身的大氣層發生周期性的或非周期性的膨脹和收縮,從而引起脈動性的光度變化。理論計算表明脈動周期與恒星密度的平方根成反比。因此那些重復周期為幾百乃至幾千天的晚型不規則變星、半規則變星和長周期變星都是體積巨大而密度很小的晚型巨星或超巨星周期約在1~50天之間的經典造父變星和周期約在,0.05~1.5天之間的天琴座RR型變星(又叫星團變星),是兩種最重要的脈動變星。觀測表明,前者的絕對星等隨周期增長而變小(這是與密度和周期的關系相適應的),因而可以通過精確測定它們的變光周期來推求它們自身以及它們所在的恒星集團的距離,所以造父變星又有宇宙中的“燈塔”或“量天尺”之稱。天琴座RR型變星也有量天尺的作用。 還有一些周期短于0.3天的脈動變星 (包括'" class=link>盾牌座型變星、船帆座AI型變星和型變星'" class=link>仙王座型變星等),它們的大氣分成若干層,各層都以不同的周期和形式進行脈動,因而,其光度變化規律是幾種周期變化的迭合,光變曲線的形狀變化很大,光變同視向速度曲線的關系也有差異。盾牌座δ型變星和船帆座AI型變星可能是質量較小、密度較大的恒星,仙王座β型變星屬于高溫巨星或亞巨星一類。 爆發變星按爆發規模可分為超新星、新星、矮新星、類新星和耀星等幾類。超新星的亮度會在很短期間內增大數億倍,然后在數月到一、二年內變得非常暗弱。目前多數人認為這是恒星演化到晚期的現象。超新星的外部殼層以每秒鐘數千乃至上萬公里的速度向外膨脹,形成一個逐漸擴大而稀薄的星云;內部則因極度壓縮而形成密度非常大的中子星之類的天體。最著名的銀河超新星是中國宋代(公元1054年)在金牛座發現的“天關客星”。現在可在該處看到著名的蟹狀星云,其中心有一顆周期約33毫秒的脈沖星。一般認為,脈沖星就是快速自轉的中子星。 新星在可見光波段的光度在幾天內會突然增強大約9個星等或更多,然后在若干年內逐漸恢復原狀。1975年8 月在天鵝座發現的新星是迄今已知的光變幅度最大的一顆。光譜觀測表明,新星的氣殼以每秒500~2,000公里的速度向外膨脹。一般認為,新星爆發只是殼層的爆發,質量損失僅占總質量的千分之一左右,因此不足以使恒星發生質變。有些爆發變星會再次作相當規模的爆發,稱為再發新星。 矮新星和類新星變星的光度變化情況與新星類似,但變幅僅為2~6個星等,發亮周期也短得多。它們多是雙星中的子星之一,因而不少人的看法傾向于,這一類變星的爆發是由雙星中某種物質的吸積過程引起的。 耀星是一些光度在數秒到數分鐘間突然增亮而又很快回復原狀的一些很不規則的快變星。它們被認為是一些低溫的主序前星。 [21世紀教育網][來源:21世紀教育網] 還有一種北冕座 R型變星,它們的光度與新星相反,會很快地突然變暗幾個星等,然后慢慢上升到原來的亮度。觀測表明,它們是一些含碳量豐富的恒星。大氣中的碳塵埃粒子突然大量增加,致使它們的光度突然變暗,因而也有人把它們叫作碳爆變星。 隨著觀測技術的發展和觀測波段的擴大,還發現了射電波段有變化的射電變星和X射線輻射流量變化的X射線變星等。 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫