中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

第二章 復習提升(含答案解析)

資源下載
  1. 二一教育資源

第二章 復習提升(含答案解析)

資源簡介

第2章 電勢能與電勢差
本章復習提升
易混易錯練
易錯點1 基本概念理解不到位而出錯
1.以下說法中正確的是 (  )
A.勻強電場中各處的電場強度相等,電勢也相等
B.電場強度為零的區域中,電勢處處相等
C.沿電場線方向電場強度一定越來越小
D.電勢降低的方向就是電場線的方向
易錯點2 不理解電勢的相對意義
2.兩個較大的平行金屬板分別接在如圖所示的電路中,將開關K閉合后,一帶負電的油滴被固定于板間的P點。現將平行板電容器的下極板豎直向下平移一小段距離,則下列說法正確的是 (  )
A.平行板電容器的電容將變大
B.靜電計指針張角變小
C.帶電油滴的電勢能減少
D.若將上極板與電源斷開后再將下極板左移一小段距離,則油滴所受電場力不變
易錯點3 電場線、等勢面理解有誤
3.如圖所示,虛線a、b、c代表電場中的三個等勢面,相鄰等勢面之間的電勢差相等,即Uab=Ubc,實線為一帶正電的質點僅在電場力作用下通過該區域時的運動軌跡,P、R、Q是這條軌跡上的三點,R點在等勢面b上,據此可知 (  )
A.三個等勢面中,c的電勢最高
B.帶電質點在P點的加速度比在Q點的加速度小
C.帶電質點在P點的電勢能比在Q點的大
D.帶電質點從Q點到P點,電場力做正功
易錯點4 認為做類平拋運動的帶電粒子只能從一側偏離
4.平行板電容器的兩金屬板A、B水平放置,質量為5.0×10-6 kg的帶電粒子以v0=2.0 m/s的水平速度從兩極板間中線位置射入電場,如圖所示,A、B間距為4 cm,板長為10 cm,g取10 m/s2,當UAB=1 000 V,粒子恰好不發生偏轉。欲使該粒子能穿出電場,則A、B間所加的電壓應為多少
易錯點5 沒有掌握判斷熒光屏上有幾個亮點的方法
5.如圖,平行板電容器的兩極板均水平放置,質子H)、氘核H)和α粒子He)都沿兩極板間中線OO'方向垂直于電場線射入板間的勻強電場,射出后都打在同一個與OO'垂直且緊靠極板右側邊緣的熒光屏(未畫出)上,使熒光屏上出現亮點。則 (  )
A.若它們射入電場時的速度相等,在熒光屏上將出現2個亮點
B.若它們射入電場時的質量與速度的乘積相等,在熒光屏上將只出現2個亮點
C.若它們射入電場時的動能相等,在熒光屏上將只出現1個亮點
D.若它們是由同一個電場從靜止加速后射入此偏轉電場的,在熒光屏上將出現3個亮點
易錯點6 生搬硬套圓周運動的臨界條件出錯
6.一長為L= m的細線一端固定于O點,另一端拴一質量為m=×10-2 kg、帶電荷量為q=10-4 C的帶正電小球,處于如圖所示的水平向右的勻強電場中。開始時,將細線與小球拉成水平伸直狀態,小球靜止在A點,釋放后小球由靜止開始向下擺動,當細線轉動到O點左側且與豎直方向夾角θ=30°時,小球速度恰好為零,g取10 m/s2,求:
(1)勻強電場的電場強度大小E;
(2)小球達到最大速度時,細線對小球的拉力大小FT;
(3)若想讓小球做完整的圓周運動,則小球在A點釋放瞬間至少要獲得多大的豎直向下的初速度v0m
易錯點7 不善于利用動能定理解決電場力做功問題
7.如圖所示,固定于同一條豎直線上的點電荷M、N相距2d,電荷量分別為+Q和-Q。EF是豎直放置的光滑絕緣細桿,另有一個穿過細桿的帶電小球p,其質量為m、電荷量為+q,現將小球p從與點電荷M等高的E點由靜止開始釋放,小球p向下運動到與E點距離為d的O點時,速度為v。已知MN與EF之間的距離也為d,靜電力常量為k,重力加速度大小為g,求:
(1)小球p從E點到O點的過程中電場力對小球做的功WEO及E、O點間的電勢差UEO;
(2)小球p經過O點時的加速度大小;
(3)小球p經過與點電荷N等高的F點時的速度大小。
思想方法練
一、控制變量思想
1.如圖所示,平行板電容器上極板帶正電荷,且與靜電計相連,靜電計金屬外殼和電容器下極板都接地,在兩極板間有一個固定在P點的正點電荷,以E表示兩極板間電場的電場強度,Ep表示點電荷在P點的電勢能,θ表示靜電計指針的偏角,若保持上極板不動,將下極板向上移動一小段距離至圖中虛線位置,則 (  )
A.θ增大,E增大,Ep增大
B.θ增大,E增大,Ep減小
C.θ減小,E不變,Ep增大
D.θ減小,E不變,Ep減小
二、守恒思想
2.如圖所示,虛線表示電場中幾個相鄰的等差等勢面,實線表示一帶電荷量為|q|=3e的粒子的運動軌跡,其中φ3=0,Ek3=6 eV,相鄰兩等勢面的電勢差大小為3 V,a、b為運動軌跡上的兩點,不計粒子重力,則下列說法中正確的是 (  )
A.該帶電粒子帶負電
B.該帶電粒子是從a向b運動的
C.該帶電粒子經過φ1等勢面時的動能為24 eV
D.該帶電粒子經過φ2等勢面時的電勢能為15 eV
三、圖像法
3.如圖甲所示,在某電場中有一條電場線與x軸重合,取O點電勢為零,Ox方向上各點的電勢隨x軸坐標變化的關系如圖乙所示,若在O點由靜止釋放一電子,電子僅受電場力的作用。則 (  )
A.沿Ox方向電場強度先減小后增大
B.電子所受電場力沿x軸負方向
C.電子的電勢能將一直增大
D.電子運動的加速度一直增大
4.空間有沿x軸正方向的電場,電場強度E與位置x的關系如圖所示,圖中E0、x0為已知量。取x=x0處的電勢為零,一質量為m、電荷量為+q的粒子僅在電場力作用下從x=0處由靜止開始運動,下列說法正確的是 (  )
A.該粒子在x=x0到x=2x0的過程中做勻加速運動
B.x=0處的電勢為-E0x0
C.該粒子在x=2x0處的動能為qE0x0
D.該粒子在x=x0到x=2x0的過程中克服電場力做功為qE0x0
5.空間中存在一靜電場,一電子從x=0處以一定的初速度沿x軸正方向射出,僅在電場力作用下在x軸上做直線運動,其電勢能Ep隨位置x變化的Ep-x圖像如圖所示,則下列判斷正確的是 (  )
A.x1處電場強度比x3處電場強度大
B.x2處電勢最高、電場強度最小
C.把一個正電子從x1處由靜止釋放,不能到達x3處
D.把一個正電子從x1處移到x3處電場力先做負功后做正功
四、等效法
6.如圖所示,一半徑為R的絕緣圓形軌道豎直放置,圓軌道最低點B點與一條水平軌道相連,軌道是光滑的,軌道所在空間存在水平向右、場強為E的勻強電場。從水平軌道上的A點由靜止釋放一質量為m、帶正電的小球,A、B間的距離為s,小球受到的電場力大小等于小球重力的,C點為圓形軌道上與圓心O等高的點。(重力加速度為g)
(1)若s=2R,求小球運動到C點時對軌道的壓力大小;
(2)為使小球剛好在圓軌道內完成圓周運動,求s的值。
7.如圖所示,在豎直邊界線O1O2左側空間存在一豎直向下的勻強電場,電場強度E=100 N/C,電場區域內有一固定的粗糙絕緣斜面AB,其傾角為30°,A點距水平地面的高度為h=4 m。BC段為一粗糙絕緣水平面,其長度為L= m。斜面AB與水平面BC由一段極短的光滑小圓弧連接(圖中未標出),豎直邊界線O1O2右側區域固定一半徑為R=0.5 m的半圓形光滑絕緣軌道,CD為半圓形光滑絕緣軌道的直徑,C、D兩點緊貼豎直邊界線O1O2,位于電場區域的外部(忽略電場對O1O2右側空間的影響)。現將一個質量為m=1 kg、電荷量為q=0.1 C的帶正電的小球(可視為質點)在A點由靜止釋放,且該小球與斜面AB和水平面BC間的動摩擦因數均為μ=(g取10 m/s2)。求:
(1)小球到達C點時的速度大小;
(2)小球到達D點時所受軌道的壓力大小;
(3)小球落地點距離C點的水平距離。
答案與分層梯度式解析
第2章 電勢能與電勢差
本章復習提升
易混易錯練
1.B 2.C 3.C 5.A
1.B 勻強電場中各處的電場強度相等,但沿電場線方向電勢一定越來越低,所以電勢并不是相等的,A錯誤;電場強度為零的區域中,電勢處處相等,B正確;沿電場線方向電勢一定越來越低,而電場強度的大小與電場線的疏密有關,C錯誤;電勢降低最快的方向是電場線的方向,D錯誤。
錯解分析 (1)誤認為電場強度與電勢大小有關,而實際上電場強度與電勢分別是描述靜電力和電勢能最重要的物理量,兩者大小沒有直接關系,電場強度大的地方,電勢可以為零,電場強度為零的地方,電勢不一定為零,如等量異種點電荷連線的中點,電勢為零,但電場強度不為零。
  (2)沿電場線方向電勢逐漸降低,故誤認為電勢降低的方向就是電場線的方向,而實際上電勢降低最快的方向才是電場線的方向。
2.C 將電容器的下極板下移后,極板間距增大,根據C=,可知電容器的電容變小,故A錯誤;電容器始終與電源相連,兩極板間的電勢差不變,所以靜電計指針張角不變,故B錯誤;電容器兩極板間的電勢差不變,故上、下極板的電勢均不變,間距d變大,根據E=可知,兩極板間的電場強度E變小,P點與上極板間的電勢差變小,即P點的電勢增大,因為該油滴帶負電,所以其電勢能減少,故C正確;若將電容器上極板與電源斷開,則電容器所帶的電荷量不變,當極板正對面積S減小時,由C=可知電容器的電容變小,由C=可知兩極板間的電勢差增大,根據E=可知兩極板間的電場強度變大,故油滴所受電場力變大,故D錯誤。故選C。
錯解分析 不理解電勢的相對意義造成錯解。對某點電勢的判斷,要利用該點與電勢不變的點之間的電勢差來判斷。本題中上、下極板電勢均不變,P點電勢的變化情況應通過P點與上極板之間電勢差的變化情況來判斷。解題時要注意電勢的相對性,避免與電勢差相混淆。
3.C 根據電場方向與等勢面垂直,電場力指向曲線軌跡的凹側,且質點帶正電,在R點質點的受力和電場方向如圖所示:
根據沿電場方向電勢降低可知,三個等勢面中,c的電勢最低,故A錯誤;等差等勢面越密集處場強越大,則P點的電場強度比Q點的電場強度大,帶電質點在P點的加速度比在Q點的加速度大,故B錯誤;根據Ep=qφ,由于P點的電勢大于Q點的電勢,且質點帶正電,可知帶電質點在P點的電勢能比在Q點的大,故C正確;帶電質點從Q點到P點,電勢能增大,電場力做負功,故D錯誤。故選C。
錯解分析 (1)誤把等勢面當成電場線;
(2)不能正確判斷帶電質點的受力方向與運動方向的關系。
4.答案 -600 V≤UAB≤2 600 V
解析 當UAB=1 000 V時,由二力平衡知識可知
Eq=q=mg
解得q==2×10-9 C
當Eq>mg(UAB>1 000 V)時,帶電粒子向上偏,當粒子恰從A板邊緣射出時,所加電壓最大,設此時A、B間的電壓為U1,側移量y=at2=d,由牛頓第二定律得a=-g,t=,聯立解得U1=2 600 V
當Eqy=a't2=d
a'=g-,t=,聯立解得U2=-600 V
所以UAB的范圍是-600 V≤UAB≤2 600 V
錯解分析 受定式思維影響,只考慮粒子從下板邊緣射出,而遺漏從上板邊緣也可以射出,造成漏解。解題時要認真審題,看清楚物體的重力是否可以忽略,分析清楚物體的各種運動情況。
5.A 三個粒子進入勻強電場中均做類平拋運動,在水平方向做勻速直線運動,在豎直方向做初速度為零的勻加速直線運動,加速度為a=,偏轉距離為y=at2,運動時間為t=,解得y=。若它們射入電場時的速度相等,y與比荷成正比,而三個粒子中質子的比荷最大,氘核和α粒子的比荷相等,在熒光屏上將出現2個亮點,A正確;若它們射入電場時的質量與速度的乘積相等,y==,可見y與qm成正比,三個粒子的qm都不同,則在熒光屏上將出現3個亮點,B錯誤;若它們射入電場時的動能相等,y與q成正比,在熒光屏上將只出現2個亮點,C錯誤;若它們是由同一個電場從靜止加速后射入此偏轉電場的,由qU=m可知y=,y都相同,故熒光屏上將只出現1個亮點,D錯誤。
錯解分析 不認真分析計算,誤認為質子、氘核和α粒子的質量和電荷量不同,它們通過相同的加速電場、偏轉電場后,肯定速度方向不同,軌跡不一樣,打在熒光屏的不同點,造成錯選D。本題中粒子在偏轉電場中做類平拋運動,垂直于電場方向上做勻速直線運動,沿電場方向做勻加速運動,根據牛頓第二定律和運動學公式得到粒子偏轉距離與偏轉電壓的關系,即可判斷粒子打在熒光屏上的位置關系。解題時要掌握判斷熒光屏上有幾個亮點的方法,不要亂套公式。
6.答案 (1)103 V/m (2)0.4 N (3)4 m/s
解析 (1)設小球擺動到O點左側速度為零的點為B點,小球由A到B過程中,由動能定理得mgL cos 30°-qEL(1+ sin 30°)=0
解得E=103 V/m
(2)小球到達B點時速度為零,根據對稱性可知,小球處在中點位置C時切線方向合力為零,此時細線與水平方向夾角恰為60°,小球的速度最大,C點是等效最低點。受力分析如圖,
從A點到C點,由動能定理得
mgL cos 30°-qEL sin 30°=m
解得vm=2 m/s
設電場力與重力的合力為F',則F'=
由牛頓第二定律得FT-F'=m
解得FT=0.4 N
(3)C點關于O的對稱點C'為等效最高點,若想讓小球恰做完整的圓周運動,則在C'點有F'=m
從A到C'由動能定理得
-mgL cos 30°-qEL(1+ sin 30°)=mv'2-m
解得v0m=4 m/s
錯解分析 誤認為在豎直平面內能做完整的圓周運動的物體在最高點的臨界速度v都滿足mg=,但沒有細想這個結論的成立是有前提條件的,即只有在重力場中才成立。解題時要善于多角度分析問題,明確物理規律、結論成立的條件。
7.答案 (1)mv2-mgd  (2)g+ (3)v
解析 (1)小球p從E點到O點過程,根據動能定理可得mgd+WEO=mv2
解得WEO=mv2-mgd
根據WEO=qUEO
可得UEO=
(2)小球p在O點的受力如圖所示
由牛頓第二定律可得
mg+2k cos 45°=ma
解得a=g+
(3)小球p從E點到F點過程,根據動能定理可得
2mgd+WEF=m
又WEF=2WEO
聯立解得
vF=v
錯解分析 (1)不明確WAB=qUAB不僅適用勻強電場也適用非勻強電場。
(2)不善于運用能量觀點分析問題
如果是勻強電場,既可用牛頓第二定律和運動學公式求解,又可用能量觀點(如動能定理、功能關系)求解。若為非勻強電場,帶電粒子受到的電場力是變力,加速度是變量,只能用能量觀點求解。帶電粒子在電場中具有一定的電勢能,同時還可能具有動能和重力勢能等,因此涉及功和能的問題應優先考慮利用動能定理求解。
思想方法練
1.D 2.C 3.A 4.C 5.A
1.D 電容器電荷量不變;下極板向上移動時,兩板間的距離減小,根據C=可知,電容C增大,則根據Q=CU可知,電壓U減小,故靜電計指針偏角θ減小;兩板間的電場強度E===,即電場強度與板間距無關,因此電場強度不變;根據U=Ed=φ, P點與下極板的距離減小,則P點的電勢降低,根據Ep=qφ可知正點電荷在P點的電勢能減小,故選項D正確。
方法點津 電容器動態分析問題的處理方法
(1)確定不變量。電容器與電源相連時,電壓U不變;電容器充電后與電源斷開時,所帶電荷量Q不變。
(2)根據決定式C=和S、εr、d的變化分析平行板電容器電容的變化。
(3)根據定義式C=分析電容器所帶電荷量Q或兩極板間電壓U的變化。
(4)用E=或E∝分析電容器兩極板間場強的變化,或根據電容器帶電荷量Q的變化分析回路中的電流方向。
2.C 根據題意可知,等勢面的電勢高低不確定,即電場方向不確定,可知粒子的電性也不能確定,故A錯誤。根據題意,粒子的運動方向不確定。由于電場線與等勢面垂直,而粒子僅受電場力,根據合力方向指向軌跡內側,可知電場力方向垂直于等勢面大致向右,若粒子從a運動到b,粒子的速度與電場力方向的夾角為銳角,粒子做加速運動;若粒子從b運動到a,粒子的速度與電場力方向的夾角為鈍角,粒子做減速運動,故B錯誤。根據上述分析,若粒子從a運動到b,電場力做正功,粒子從φ3等勢面運動到φ1等勢面過程,根據動能定理有3e|φ1-φ3|=Ek1-Ek3,其中|φ1-φ3|=6 V,解得Ek1=24 eV,故C正確。若粒子從a運動到b,電場力做正功,粒子從φ3等勢面運動到φ2等勢面過程,電勢能減小,根據動能定理有3e|φ2-φ3|=Ek2-Ek3,其中|φ2-φ3|=3 V,解得Ek2=15 eV,粒子在運動過程中,只有電勢能與動能的轉化,即電勢能與動能之和一定,由于φ3=0,則粒子在φ3等勢面處的電勢能為0,則有Ek2+Ep2=Ek3,解得Ep2=-9 eV,故D錯誤。故選C。
方法點津 選用能量守恒定律解題,要分清有多少種形式的能參與轉化,哪種能量增加,哪種能量減少,且增加量等于減少量。此題帶電粒子在電場中只受靜電力作用,只有電勢能和動能的轉化。利用動能定理分段研究動能的變化,根據能量守恒,進而判斷粒子電勢能的變化。
3.A φ-x圖線斜率表示場強大小,由圖乙可知,沿Ox方向電場強度先減小后增大,A正確;由圖乙可知,沿x軸正方向電勢升高,所以電場方向沿x軸負方向,則電子所受電場力沿x軸正方向,B錯誤;電場力對電子做正功,電子的電勢能減少,C錯誤;根據選項A可知,電子所受電場力先減小后增大,則加速度先減小后增大,D錯誤。
方法點津 解答關于φ x圖像問題可把握以下三點:
(1)根據φ x圖像可以直接比較特定方向上兩位置電勢的高低,求出兩位置的電勢差。
(2)根據φ x圖像可以判斷電場強度E的大小,圖像的切線斜率的絕對值|k|==E。沿著電場強度方向電勢降低,而電勢降低的方向不一定就是電場強度方向。本類問題電場強度一般是沿x軸或者有沿x軸的分量,故可以根據電勢降低方向來定性判斷沿x軸電場強度的方向。
(3)根據φ x圖像,結合帶電粒子的實際運動情況,可以確定帶電粒子的電性、電場力的變化情況、加速度的變化情況、電場力做功情況、電勢能變化情況、動能變化情況等。
4.C 由題圖可知從x=x0到x=2x0處電場強度E隨位置x均勻減小,由F=qE=ma,知粒子的加速度逐漸減小,故A錯誤;x=x0處的電勢為零,粒子僅在電場力作用下從x=0處由靜止開始運動到x=x0處,電場力做正功,W=qE0x0=Ep0-0=qφ0-0,所以x=0處的電勢φ0=E0x0,故B錯誤;粒子由x=0運動到x=2x0過程應用動能定理得qE0x0=Ek-0,所以該粒子在x=2x0處的動能為Ek=qE0x0,故C正確;該粒子在x=x0到x=2x0的過程中所受電場力隨x均勻減小,粒子受到的平均電場力=,電場力做功為W=x0=qE0x0,故D錯誤。
方法點津 E x圖像的應用
在給定了電場的E x圖像后,可以由圖像直接確定電場強度沿x軸方向的變化情況,x軸上方的場強為正值,x軸下方的場強為負值;根據沿電場方向電勢降低,可以確定電勢的變化情況;根據U=Ed,可知E-x圖線與x軸所圍圖形“面積”表示電勢差。在與粒子運動相結合的題目中,可進一步確定粒子的電性、動能變化、電勢能變化等情況。
5.A 由電場力做功的特點可知eE×Δx=ΔEp,則Ep-x圖像的斜率k=Ee,因此圖像的斜率越大,電場強度越大,所以x1處電場強度比x3處電場強度大,A正確;x2處圖像的斜率是零,則電場強度是零,最小,由Ep=qφ,可知負電荷在電勢低的位置電勢能大,因此x2處電勢最低,B錯誤;x1處的電勢要高于x2處電勢,x1處與x3處電勢相等,把一個正電子從x1處由靜止釋放,由電場力做功特點可知,正電子能到達x3處,C錯誤;由于x1處的電勢要高于x2處電勢,x1處與x3處電勢相等,可知把一個正電子從x1處移到x3處電場力先做正功后做負功,D錯誤。
6.答案 (1) (2)
解析 (1)小球從A點由靜止釋放,在電場力作用下運動,從A點到C點電場力做正功,重力做負功,由動能定理得
qE·(s+R)-mgR=m,其中s=2R
到達C點時,小球受到的支持力和電場力的合力提供向心力
FN-qE=m
聯立解得FN=
由牛頓第三定律知,小球對軌道的壓力大小與小球受到的支持力大小相等,則FN'=FN=。
(2)為了使小球剛好在圓軌道內完成圓周運動,小球到達D點時恰好僅受重力和電場力,如圖所示,此時有
合力F==mg
合力提供向心力,則有F=m
設合力F與豎直方向的夾角為θ,則
tan θ===
即θ=37°
從A點到D點由動能定理得
qE(s-R sin θ)-mgR(1+cos θ)=mv2
解得s=。
7.答案 (1)2 m/s (2)30 N (3) m
解析 (1)以小球為研究對象,由A點至C點的運動過程中,根據動能定理可得
(mg+Eq)h-μ(mg+Eq)cos 30°·-μ(mg+Eq)L=m-0,
解得vC=2 m/s。
(2)以小球為研究對象,在由C點至D點的運動過程中,
以地面為零勢能面,根據機械能守恒定律可得
m=m+mg·2R
在最高點,以小球為研究對象,可得FN+mg=m,
解得vD=2 m/s,FN=30 N。
(3)設小球做類平拋運動的加速度大小為a,根據牛頓第二定律可得mg+qE=ma,解得a=20 m/s2
假設小球落在BC段,則應用類平拋運動的規律列式可得x=vDt,2R=at2,
解得x= m< m,假設正確。
即小球落地點距離C點的水平距離為 m。
方法點津 此類題中,由于重力和電場力都是恒力,所以它們的合力也是恒力,將重力和電場力合成為一個恒力,可以將這個復合場當做等效重力場,則F合為等效重力場中的“重力”,g'=為等效重力場中的“等效重力加速度”,F合的方向等效為“重力”的方向。當此恒力F合的方向與運動方向垂直時,速度(或動能)取得極值,小球在等效重力場中能夠做豎直平面內的圓周運動的臨界條件是恰好能夠通過圓周軌道上等效最高點。凡是重力場和電場共存的情況都可以用此方法求解。對應關系如下:
等效重力 重力、電場力的合力。
等效重力加速度 等效重力與物體質量的比值。
等效“最低點” 物體自由時能處于穩定平衡狀態的位置。
等效“最高點” 物體做圓周運動時與等效最低點關于圓心對稱的位置。
等效重力勢能 等效重力大小與物體“高度”(物體所在位置沿等效重力場方向到等效勢能零點的距離)的乘積。
7

展開更多......

收起↑

資源預覽

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 永修县| 鄂托克旗| 肃北| 蒙阴县| 阜宁县| 策勒县| 佛坪县| 武陟县| 石林| 阿拉善右旗| 裕民县| 山阴县| 白山市| 杨浦区| 扶余县| 巩义市| 苍南县| 米林县| 夏河县| 文昌市| 岳普湖县| 赞皇县| 古丈县| 宁化县| 武鸣县| 余姚市| 洱源县| 昌黎县| 昌乐县| 富民县| 肃北| 赤峰市| 东山县| 江油市| 麻阳| 达尔| 聂拉木县| 修文县| 枣阳市| 黑山县| 威信县|