資源簡(jiǎn)介 中小學(xué)教育資源及組卷應(yīng)用平臺(tái)【江蘇省各地區(qū)真題匯編】數(shù)列考前專題特訓(xùn)-2025年高考數(shù)學(xué)一.選擇題(共8小題)1.(2025 南京模擬)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S12=63+S3,a3+a12=12,則{an}的公差為( ?。?br/>A.1 B.2 C.3 D.42.(2025 武進(jìn)區(qū)校級(jí)一模)已知數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=1,且滿足,則S11的值為( ?。?br/>A.4093 B.4094 C.4095 D.40963.(2024秋 通州區(qū)期末)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2=2,且a2,a3,a4﹣2成等差數(shù)列,則S4=( ?。?br/>A.7 B.12 C.15 D.314.(2025 秦淮區(qū)校級(jí)二模)若數(shù)列{an}為等比數(shù)列,則“a3=1”是“a1 a5=1”的( )A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件5.(2025 江蘇校級(jí)模擬)在數(shù)列{2n}的項(xiàng)2i和2i+1之間插入i個(gè)i(i=1,2,3, ,i∈N*)構(gòu)成新數(shù)列{an},則a100=( ?。?br/>A.13 B.213 C.14 D.2146.(2025 江蘇三模)設(shè)cn=an+bn,數(shù)列{bn}為等比數(shù)列,數(shù)列{an}是公差不為零的等差數(shù)列,且a1=b1=1,a2=b2,a4=b3,則數(shù)列{cn}的前10項(xiàng)和為( )A.1078 B.1077 C.567 D.5507.(2024秋 金壇區(qū)校級(jí)月考)已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若,則( ?。?br/>A. B. C. D.8.(2025 鼓樓區(qū)校級(jí)模擬)記Sn為等差數(shù)列{an}的前n項(xiàng)和,公差d>0,且a2020 a2021<0,則Sn取得最小值時(shí)n為( ?。?br/>A.2021 B.4039 C.2020 D.4040二.多選題(共3小題)(多選)9.(2023秋 啟東市校級(jí)月考)已知Sn是{an}的前n項(xiàng)和,a1=2,,則下列選項(xiàng)正確的是( ?。?br/>A.a(chǎn)2021=2B.S2021=1012C.a(chǎn)3n a3n+1 a3n+2=1D.{an}是以3為周期的周期數(shù)列(多選)10.(2025 江蘇模擬)已知數(shù)列{an}滿足a1=1,.下列說(shuō)法正確的是( ?。?br/>A.?dāng)?shù)列{an}每一項(xiàng)an都滿足B.?dāng)?shù)列{an}是遞減數(shù)列C.?dāng)?shù)列{an}的前n項(xiàng)和Sn<2D.?dāng)?shù)列{an}每一項(xiàng)都滿足成立(多選)11.(2025 南京二模)已知數(shù)列{an}中,,其前n項(xiàng)和為Sn,則( ?。?br/>A. B.C.a(chǎn)n≥a7 D.S10<0三.填空題(共3小題)12.(2017春 興化市校級(jí)月考)設(shè){an}為等差數(shù)列,其前n項(xiàng)和為Sn.若a3+a7=10,則S9= .13.(2025 江蘇三模)已知數(shù)列{an}滿足a1=2,,n∈N*.設(shè),若不等式對(duì)于任意n∈N*都成立,則正數(shù)k的最大值為 .14.(2025春 宜興市期中)如圖,三個(gè)邊長(zhǎng)均為2的等邊三角形有一條邊在同一條直線上,P3,Q3是邊B3C3的兩個(gè)三等分點(diǎn),AP3分別交B1C1、B2C2于P1、P2,AQ3分別交B1C1、B2C2于Q1、Q2,則 .(注:)四.解答題(共5小題)15.(2025 秦淮區(qū)校級(jí)二模)在數(shù)列{an}中,已知a1=2,且當(dāng)n為奇數(shù)時(shí),an+1=3an+1;當(dāng)n為偶數(shù)時(shí),an+1=2an﹣1.(1)求{an}的通項(xiàng)公式;(2)求{an}的前2n項(xiàng)和S2n.16.(2025 江蘇校級(jí)模擬)已知數(shù)列{an},其前n項(xiàng)和為Sn,a1=1,Sn+1=Sn+an+2.(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;(2)若,求數(shù)列{bn}的前n項(xiàng)和Tn.17.(2018春 泰州期末)已知數(shù)列{an},{bn}滿足bn=an+1﹣an,數(shù)列{bn}前n項(xiàng)和為Tn.(1)若數(shù)列{an}是首項(xiàng)為正數(shù),公比為q(q>1)的等比數(shù)列.①求證:數(shù)列{bn}為等比數(shù)列;②若Tn+1≤4bn對(duì)任意n∈N*恒成立,求q的值;(2)已知{an}為遞增數(shù)列,即.若對(duì)任意n∈N*,數(shù)列{an}中都存在一項(xiàng)am使得bn+1=am﹣an,求證:數(shù)列{an}為等差數(shù)列.18.(2025春 亭湖區(qū)校級(jí)月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,且.(1)求{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn,求{bn}的前2n項(xiàng)和T2n.19.(2025 鼓樓區(qū)校級(jí)模擬)函數(shù)y=f(x),其中,定義域是一切實(shí)數(shù).(1)計(jì)算的值并指出其幾何意義;(2)當(dāng)時(shí),方程f(x)=a+x只有一個(gè)解,求實(shí)數(shù)a的取值范圍;(3)設(shè)x1=0,xn+1=f(xn),,n≥1,n∈N,bn=y(tǒng)n﹣xn.求證:.【江蘇省各地區(qū)真題匯編】數(shù)列考前專題特訓(xùn)-2025年高考數(shù)學(xué)參考答案與試題解析一.選擇題(共8小題)題號(hào) 1 2 3 4 5 6 7 8答案 B A C A A A C C二.多選題(共3小題)題號(hào) 9 10 11答案 BD ABD ABD一.選擇題(共8小題)1.(2025 南京模擬)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S12=63+S3,a3+a12=12,則{an}的公差為( ?。?br/>A.1 B.2 C.3 D.4【解答】解:等差數(shù)列{an}的前n項(xiàng)和為Sn,S12=63+S3,a3+a12=12,∴,解得a1=﹣7,d=2.故選:B.2.(2025 武進(jìn)區(qū)校級(jí)一模)已知數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=1,且滿足,則S11的值為( ?。?br/>A.4093 B.4094 C.4095 D.4096【解答】解:,故,又a1﹣2=﹣1,所以是首項(xiàng)為﹣1,公比為﹣1的等比數(shù)列,所以,則.故選:A.3.(2024秋 通州區(qū)期末)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2=2,且a2,a3,a4﹣2成等差數(shù)列,則S4=( ?。?br/>A.7 B.12 C.15 D.31【解答】解:設(shè)公比為q(q≠0),∵a2,a3,a4﹣2成等差數(shù)列,∴2a3=a2+a4﹣2,則2×2q=2+2q2﹣2,解得:q=2或0(舍去),a2=2,∴a1=1,故.故選:C.4.(2025 秦淮區(qū)校級(jí)二模)若數(shù)列{an}為等比數(shù)列,則“a3=1”是“a1 a5=1”的( ?。?br/>A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【解答】解:由題意知,若數(shù)列{an}為等比數(shù)列,當(dāng)a3=1時(shí),得,故充分性成立;當(dāng)a1a5=1時(shí),,解得a3=±1,故必要性不成立.故選:A.5.(2025 江蘇校級(jí)模擬)在數(shù)列{2n}的項(xiàng)2i和2i+1之間插入i個(gè)i(i=1,2,3, ,i∈N*)構(gòu)成新數(shù)列{an},則a100=( )A.13 B.213 C.14 D.214【解答】解:由題意,在2i和2i+1之間插入i個(gè)i(i=1,2,3, ,i∈N*)構(gòu)成數(shù)列{an},所以,則數(shù)列{2n}中不超過(guò)2i的數(shù)的個(gè)數(shù)為,當(dāng)i=13時(shí),,當(dāng)i=14時(shí),,故a100位于213和214之間,所以a100=13.故選:A.6.(2025 江蘇三模)設(shè)cn=an+bn,數(shù)列{bn}為等比數(shù)列,數(shù)列{an}是公差不為零的等差數(shù)列,且a1=b1=1,a2=b2,a4=b3,則數(shù)列{cn}的前10項(xiàng)和為( ?。?br/>A.1078 B.1077 C.567 D.550【解答】解:cn=an+bn,數(shù)列{bn}為等比數(shù)列,數(shù)列{an}是公差不為零的等差數(shù)列,且a1=b1=1,a2=b2,a4=b3,由題意,即,即(1+d)2=1+3d,整理得d2﹣d=0,因?yàn)閐≠0,所以d=1,故an=a1+(n﹣1)d=1+n﹣1=n,所以b2=a2=2,則,故,又因?yàn)椋?br/>所以數(shù)列{cn}的前10項(xiàng)和為S10=(a1+a2+a3+ +a10)+(b1+b2+b3+ +b10).故選:A.7.(2024秋 金壇區(qū)校級(jí)月考)已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若,則( )A. B. C. D.【解答】解:等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,,由等差數(shù)列性質(zhì)得,,由得,.故選:C.8.(2025 鼓樓區(qū)校級(jí)模擬)記Sn為等差數(shù)列{an}的前n項(xiàng)和,公差d>0,且a2020 a2021<0,則Sn取得最小值時(shí)n為( ?。?br/>A.2021 B.4039 C.2020 D.4040【解答】解:因?yàn)楣頳>0,所以a2020<a2021,又a2020 a2021<0,所以a2020<0,a2021>0,所以前2020項(xiàng)的和S2020為Sn的最小值,故n=2020.故選:C.二.多選題(共3小題)(多選)9.(2023秋 啟東市校級(jí)月考)已知Sn是{an}的前n項(xiàng)和,a1=2,,則下列選項(xiàng)正確的是( ?。?br/>A.a(chǎn)2021=2B.S2021=1012C.a(chǎn)3n a3n+1 a3n+2=1D.{an}是以3為周期的周期數(shù)列【解答】解:∵a1=2,,∴,,,…,則數(shù)列{an}是以3為周期的周期數(shù)列,故D正確;則,故A錯(cuò)誤;,故B正確;可得,故C錯(cuò)誤.故選:BD.(多選)10.(2025 江蘇模擬)已知數(shù)列{an}滿足a1=1,.下列說(shuō)法正確的是( ?。?br/>A.?dāng)?shù)列{an}每一項(xiàng)an都滿足B.?dāng)?shù)列{an}是遞減數(shù)列C.?dāng)?shù)列{an}的前n項(xiàng)和Sn<2D.?dāng)?shù)列{an}每一項(xiàng)都滿足成立【解答】解:數(shù)列{an}滿足a1=1,,對(duì)于A,由,當(dāng)n=1時(shí),a2=a11,所以0<a2<1,下面運(yùn)用數(shù)學(xué)歸納法證明:假設(shè)當(dāng)n=k時(shí),0<ak<1;則當(dāng)n=k+1時(shí),,綜上,,故A正確;對(duì)于B,由,可得數(shù)列{an}是遞減數(shù)列,故B正確;對(duì)于C,由數(shù)列{an}滿足a1=1,,可得,,,,故C錯(cuò)誤;對(duì)于D,對(duì),兩邊取倒數(shù)可得,所以,累加得,所以,即,所以,又a1=1,故成立,故D正確.故選:ABD.(多選)11.(2025 南京二模)已知數(shù)列{an}中,,其前n項(xiàng)和為Sn,則( )A. B.C.a(chǎn)n≥a7 D.S10<0【解答】解:因?yàn)閍n﹣an+1=﹣3an+1an,所以兩邊同時(shí)除以anan+1,得:,令,則遞推式變?yōu)椋篵n+1﹣bn=﹣3;所以數(shù)列{bn}是公差為﹣3的等差數(shù)列,因?yàn)椋詁3=8,所以bn=b3+(n﹣3)(﹣3)=17﹣3n,所以數(shù)列{an}通項(xiàng)公式為:,對(duì)于A,當(dāng)n=1時(shí),,故A正確;對(duì)于B,由推導(dǎo)過(guò)程可知,,故B正確;對(duì)于C,因?yàn)椋@然a6<a7,故C錯(cuò)誤;對(duì)于D,0,故D正確.故選:ABD.三.填空題(共3小題)12.(2017春 興化市校級(jí)月考)設(shè){an}為等差數(shù)列,其前n項(xiàng)和為Sn.若a3+a7=10,則S9= 45 .【解答】解:S945.故答案為:45.13.(2025 江蘇三模)已知數(shù)列{an}滿足a1=2,,n∈N*.設(shè),若不等式對(duì)于任意n∈N*都成立,則正數(shù)k的最大值為 4 .【解答】解:根據(jù)題目已知數(shù)列{an}滿足a1=2,,n∈N*.設(shè),若不等式對(duì)于任意n∈N*都成立,因?yàn)閿?shù)列{an}滿足a1=2,,n∈N*,則,且,所以,數(shù)列是首項(xiàng)為3,公比為3的等比數(shù)列,所以,故,由,可得,令,所以,,對(duì)任意的n∈N*,xn>0,故,則xn+1>xn,故數(shù)列{xn}為遞增數(shù)列,所以,,因此,實(shí)數(shù)k的最大值為4.故答案為:4.14.(2025春 宜興市期中)如圖,三個(gè)邊長(zhǎng)均為2的等邊三角形有一條邊在同一條直線上,P3,Q3是邊B3C3的兩個(gè)三等分點(diǎn),AP3分別交B1C1、B2C2于P1、P2,AQ3分別交B1C1、B2C2于Q1、Q2,則 72 .(注:)【解答】解:以A為原點(diǎn),AC1所在直線為x軸,建立平面直角坐標(biāo)系,可得A(0,0),B2(3,),C1(2,0),C2(4,0),C3(6,0),由P3、Q3是邊B3C3的兩個(gè)三等分點(diǎn),可得,即,同理求得.則,,可得,,根據(jù)△AC1P1∽△AC3P3,且,可得,同理求得.所以,,且△AC2P2∽△AC3P3,,則,同理可得,因?yàn)椋?,),(,)?br/>所以,,可得.故答案為:72.四.解答題(共5小題)15.(2025 秦淮區(qū)校級(jí)二模)在數(shù)列{an}中,已知a1=2,且當(dāng)n為奇數(shù)時(shí),an+1=3an+1;當(dāng)n為偶數(shù)時(shí),an+1=2an﹣1.(1)求{an}的通項(xiàng)公式;(2)求{an}的前2n項(xiàng)和S2n.【解答】解:(1)在數(shù)列{an}中,已知a1=2,且當(dāng)n為奇數(shù)時(shí),an+1=3an+1;當(dāng)n為偶數(shù)時(shí),an+1=2an﹣1,則a2=3a1+1=7,當(dāng)n為偶數(shù)時(shí),an+1=2an﹣1,則數(shù)列{an}的奇數(shù)項(xiàng)是首項(xiàng)為2,公比為2的等比數(shù)列,于是,即當(dāng)n為奇數(shù)時(shí),,當(dāng)n為偶數(shù)時(shí),,所以{an}的通項(xiàng)公式是;(2)由(1)知,,,則數(shù)列{an}的前2n項(xiàng)和.16.(2025 江蘇校級(jí)模擬)已知數(shù)列{an},其前n項(xiàng)和為Sn,a1=1,Sn+1=Sn+an+2.(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;(2)若,求數(shù)列{bn}的前n項(xiàng)和Tn.【解答】解:(1)因?yàn)閿?shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=Sn+an+2,所以,Sn+1﹣Sn=an+1=an+2,即an+1﹣an=2,根據(jù)等差數(shù)列的定義可得數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)公式和求和公式可得an=1+2(n﹣1)=2n﹣1,;(2)因?yàn)?,則b1=2且,根據(jù)等比數(shù)列的定義可得數(shù)列{bn}是首項(xiàng)為2,公比為16的等比數(shù)列,故.17.(2018春 泰州期末)已知數(shù)列{an},{bn}滿足bn=an+1﹣an,數(shù)列{bn}前n項(xiàng)和為Tn.(1)若數(shù)列{an}是首項(xiàng)為正數(shù),公比為q(q>1)的等比數(shù)列.①求證:數(shù)列{bn}為等比數(shù)列;②若Tn+1≤4bn對(duì)任意n∈N*恒成立,求q的值;(2)已知{an}為遞增數(shù)列,即.若對(duì)任意n∈N*,數(shù)列{an}中都存在一項(xiàng)am使得bn+1=am﹣an,求證:數(shù)列{an}為等差數(shù)列.【解答】證明:(1)①數(shù)列{an}是公比為q(q>1)的等比數(shù)列及bn=an+1﹣an得bn≠0,∴為定值,∴數(shù)列{bn}為等比數(shù)列.解:②,∴qn﹣1(q﹣2)2≤1對(duì)任意n∈N*恒成立,而q>1,∴q=2.∵q>1,q≠2,∴當(dāng)時(shí),qn﹣1(q﹣2)2>1矛盾.綜上,q=2.證明:(2)∵數(shù)列{an}中都存在一項(xiàng)am使得bn+1=am﹣an,∴am=an+2﹣an+1+an,而{an}為遞增數(shù)列,則an<am=an+2﹣an+1+an<an+2,∴am=an+2﹣an+1+an=an+1,即an+2+an=2an+1,∴數(shù)列{an}為等差數(shù)列.18.(2025春 亭湖區(qū)校級(jí)月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,且.(1)求{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足bn,求{bn}的前2n項(xiàng)和T2n.【解答】解:(1)由,可得a1=S1=1,n≥2時(shí),an=Sn﹣Sn﹣1n(n+1)n(n﹣1)=n,對(duì)n=1也成立,則an=n,n∈N*;(2)bn,則{bn}的前2n項(xiàng)和T2n=(b1+b3+...b2n﹣1)+(b2+b4+...+b2n)(1...)+(4+16+...+4n)(1).19.(2025 鼓樓區(qū)校級(jí)模擬)函數(shù)y=f(x),其中,定義域是一切實(shí)數(shù).(1)計(jì)算的值并指出其幾何意義;(2)當(dāng)時(shí),方程f(x)=a+x只有一個(gè)解,求實(shí)數(shù)a的取值范圍;(3)設(shè)x1=0,xn+1=f(xn),,n≥1,n∈N,bn=y(tǒng)n﹣xn.求證:.【解答】解:(1),原式,幾何意義是函數(shù)在點(diǎn)處切線的斜率是;(2)變形f(x)=a+x得到,令,在內(nèi)恒小于零,所以函數(shù)在嚴(yán)格遞減,得到值域?yàn)?,所以a的取值范圍為;(3)證明:由(2)知函數(shù)g(x)=f(x)﹣x在嚴(yán)格減,且存在唯一的零點(diǎn),使得g(x0)=0,即f(x0)=x0,,∴,根據(jù)函數(shù)單調(diào)性知,∴f(x2)<f(x1),即x3>x2,依次類推,得到,同理,即,,∵0<yn+xn<1,∴,∴,得到,∴,,,∴.21世紀(jì)教育網(wǎng) www.21cnjy.com 精品試卷·第 2 頁(yè) (共 2 頁(yè))21世紀(jì)教育網(wǎng)(www.21cnjy.com) 展開(kāi)更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來(lái)源于二一教育資源庫(kù)