資源簡(jiǎn)介 人教A版高一下冊(cè)數(shù)學(xué)必修第二冊(cè)7.2.2復(fù)數(shù)的乘、除運(yùn)算 教學(xué)設(shè)計(jì)課題 7.2.2復(fù)數(shù)的乘、除運(yùn)算課型 概念課 課時(shí) 1學(xué)習(xí)目標(biāo) 1.掌握復(fù)數(shù)代數(shù)形式的乘法和除法運(yùn)算; 2.理解復(fù)數(shù)乘法的交換律、結(jié)合律和乘法對(duì)加法的分配律。學(xué)習(xí)重點(diǎn) 復(fù)數(shù)的乘、除運(yùn)算法則學(xué)習(xí)難點(diǎn) 復(fù)數(shù)除法的運(yùn)算法則學(xué)情分析 本節(jié)課是《復(fù)數(shù)代數(shù)形式的四則運(yùn)算》的第二課時(shí),是四則運(yùn)算的重點(diǎn),也是本章的重點(diǎn).復(fù)數(shù)的乘法法則是規(guī)定的,其合理性表現(xiàn)在:這種規(guī)定與實(shí)數(shù)乘法的法則是一致的,而且實(shí)數(shù)乘法的有關(guān)運(yùn)算律在這里仍然成立.由除法是乘法的逆運(yùn)算的這種規(guī)定,可以得到復(fù)數(shù)除法的運(yùn)算法則.核心知識(shí) 復(fù)數(shù)的乘法運(yùn)算 復(fù)數(shù)的除法運(yùn)算教學(xué)內(nèi)容及教師活動(dòng)設(shè)計(jì) (含情景設(shè)計(jì)、問(wèn)題設(shè)計(jì)、學(xué)生活動(dòng)設(shè)計(jì)等內(nèi)容) 教師個(gè)人復(fù)備一.情境引入 我們知道,兩個(gè)一次式相乘,有,復(fù)數(shù)的加減法也可以看作多項(xiàng)式相加減,那么復(fù)數(shù)的乘除法又該如何定義呢? 設(shè)計(jì)意圖:類比多項(xiàng)式的乘法運(yùn)算,以及復(fù)數(shù)的加減法運(yùn)算與多項(xiàng)式加法運(yùn)算的關(guān)系,引導(dǎo)學(xué)生思考復(fù)數(shù)乘除法運(yùn)算法則. 二.復(fù)數(shù)乘法的運(yùn)算法則和運(yùn)算律 問(wèn)題1:類比多項(xiàng)式的乘法,我們?cè)撊绾味x兩復(fù)數(shù)的乘法呢? 答案:我們規(guī)定 ,復(fù)數(shù)的乘法法則為:設(shè),是任意兩個(gè)復(fù)數(shù),那么它們的積. 追問(wèn)1:兩個(gè)復(fù)數(shù)的積是個(gè)什么數(shù)?它的的值唯一確定嗎? 答案:通過(guò)觀察,我們發(fā)現(xiàn),兩個(gè)復(fù)數(shù)的積仍是復(fù)數(shù),它的值唯一確定. 追問(wèn)2:當(dāng)都是實(shí)數(shù)時(shí),復(fù)數(shù)乘法的運(yùn)算法則與實(shí)數(shù)乘法法則一致嗎? 答案:根據(jù)法則,我們發(fā)現(xiàn),當(dāng)時(shí),都是實(shí)數(shù),復(fù)數(shù)的乘法與實(shí)數(shù)乘法法則一致. 追問(wèn)3:復(fù)數(shù)的乘法類似于實(shí)數(shù)的哪種運(yùn)算方法? 答案:兩個(gè)復(fù)數(shù)相乘,類似于兩個(gè)多項(xiàng)式相乘,只要在所得結(jié)果中把換成,并且把實(shí)部與虛部分別合并即可. 結(jié)論:兩個(gè)復(fù)數(shù)的積仍然是一個(gè)復(fù)數(shù),且唯一確定,運(yùn)算中與實(shí)數(shù)的乘法法則保持一致,類似于兩個(gè)多項(xiàng)式相乘. 設(shè)計(jì)意圖:與實(shí)數(shù)多項(xiàng)式的乘法進(jìn)行類比,有利于學(xué)生理解復(fù)數(shù)的乘法法則.同時(shí)培養(yǎng)學(xué)生類比的核心素養(yǎng). 問(wèn)題2 類比實(shí)數(shù)的運(yùn)算律,你認(rèn)為復(fù)數(shù)滿足哪些運(yùn)算律?請(qǐng)證明你的猜想. 答案:猜想:對(duì)于任意對(duì)于任意,,,有: 交換律:; 結(jié)合律:; 分配律:. 證明:設(shè),,. (1)∵ i 又,, ∴. (2). , 同理可得: , ∴. (3) ∴. 設(shè)計(jì)意圖:引導(dǎo)學(xué)生根據(jù)復(fù)數(shù)的加法滿足實(shí)數(shù)加法的運(yùn)算律,大膽嘗試推導(dǎo)復(fù)數(shù)乘法的運(yùn)算律.培養(yǎng)學(xué)生的學(xué)習(xí)興趣和勇于探索的精深. 例1:計(jì)算. 解:. 例2:計(jì)算:(1); (2). 分析:本例可以用復(fù)數(shù)的乘法法則計(jì)算,也可以用乘法公式計(jì)算. 解:(1); (2). 總結(jié):按照復(fù)數(shù)的乘法法則,三個(gè)或三個(gè)以上的復(fù)數(shù)相乘可按從左到右的順序運(yùn)算或利用結(jié)合律運(yùn)算,混合運(yùn)算和實(shí)數(shù)的運(yùn)算順序一致,在計(jì)算時(shí),若符合乘法公式,則可直接運(yùn)用公式計(jì)算. 追問(wèn)1:若,是共軛復(fù)數(shù),則是一個(gè)怎樣的數(shù)? 答案:若,是共軛復(fù)數(shù),則是一個(gè)實(shí)數(shù). 三.復(fù)數(shù)除法的運(yùn)算法則和運(yùn)算律 問(wèn)題3:我們利用復(fù)數(shù)的減法是復(fù)數(shù)加法的逆運(yùn)算,由復(fù)數(shù)的加法法則,推導(dǎo)出了復(fù)數(shù)的減法法則.同樣,復(fù)數(shù)的除法是乘法的逆運(yùn)算,嘗試?yán)脧?fù)數(shù)的乘法法則,去推導(dǎo)復(fù)數(shù)的除法法則. 答案:設(shè),則. 計(jì)算,得到, 即, 由復(fù)數(shù)相等的定義,得,, 聯(lián)立以上兩個(gè)等式,將和作為未知量, 作為常數(shù),解這個(gè)二元一次方程組,解得,. 得到. 以上,就是復(fù)數(shù)除法法則的探究過(guò)程. 復(fù)數(shù)除法的法則是:. 由此可見,兩個(gè)復(fù)數(shù)相除(除數(shù)不為0),所得的商是一個(gè)確定的復(fù)數(shù). 說(shuō)明:在進(jìn)行復(fù)數(shù)的除法運(yùn)算時(shí),通常先把寫成的形式,再把分子與分母都乘分母的共軛復(fù)數(shù),即 這里分子分母都乘分母的“實(shí)數(shù)化因式”(共軛復(fù)數(shù)),從而使分母“實(shí)數(shù)化”. 設(shè)計(jì)意圖:通過(guò)將復(fù)數(shù)的除法轉(zhuǎn)化成分式的除法,再類比實(shí)數(shù)中的分母有理化,對(duì)分母進(jìn)行實(shí)數(shù)化,通過(guò)該化簡(jiǎn)的過(guò)程,幫助學(xué)生理解復(fù)數(shù)的除法法則.滲透類比和轉(zhuǎn)化的數(shù)學(xué)思想方法,體會(huì)數(shù)學(xué)知識(shí)的緊密聯(lián)系. 例3:計(jì)算. 分析:先將除法化成分式的形式,再進(jìn)行分母實(shí)數(shù)化運(yùn)算. 解: 例4:在復(fù)數(shù)范圍內(nèi)解下列方程: (1);(2),其中,且,. 分析:利用復(fù)數(shù)的乘法容易得到(1)中方程的根.對(duì)于(2),當(dāng)時(shí),一元二次方程無(wú)實(shí)數(shù)根.利用求解一元二次方程的“根本大法”——配方法,類似于(1),就能在復(fù)數(shù)范圍內(nèi)求得(2)中方程的根. 解:(1)因?yàn)椋苑匠痰母鶠椋?(2)將方程的二次項(xiàng)系數(shù)化為1,得. 配方得:. 即. 由,知.類似(1), 可得. 所以原方程的根為. 總結(jié):在復(fù)數(shù)范圍內(nèi),實(shí)系數(shù)一元二次方程的求根公式為: (1)當(dāng)≥0時(shí),; (2)當(dāng)時(shí),. 設(shè)計(jì)意圖:在熟練應(yīng)用復(fù)數(shù)的乘法除法運(yùn)算法則之余,進(jìn)行提升練習(xí)。讓學(xué)生先獨(dú)立思考,提高學(xué)生的建構(gòu)能力及主動(dòng)發(fā)現(xiàn)問(wèn)題,探究問(wèn)題的能力.分層教學(xué),讓不同能力水平的學(xué)生學(xué)有所得. 四.歸納總結(jié) (1)復(fù)數(shù)代數(shù)形式的乘法法則: 兩個(gè)復(fù)數(shù)相乘,類似于兩個(gè)多項(xiàng)式相乘,只要在所得結(jié)果中把換成,并且把實(shí)部與虛部分別合并即可. (2)復(fù)數(shù)代數(shù)形式的除法法則: 在進(jìn)行復(fù)數(shù)的除法運(yùn)算時(shí),通常先把寫成的形式,再把分子與分母都乘分母的共軛復(fù)數(shù),將分母“實(shí)數(shù)化”. 設(shè)計(jì)意圖:通過(guò)課堂小結(jié),增強(qiáng)學(xué)生對(duì)復(fù)數(shù)代數(shù)形式的乘法除法運(yùn)算的理解.引導(dǎo)學(xué)生自我反饋、自我總結(jié),并對(duì)所學(xué)知識(shí)進(jìn)行提煉升華.板書設(shè)計(jì) 1. 復(fù)數(shù)的乘法運(yùn)算 2. 復(fù)數(shù)的除法運(yùn)算 3.例題板書作業(yè)設(shè)計(jì) (精準(zhǔn)作業(yè))7.2.2復(fù)數(shù)的乘、除運(yùn)算教學(xué)反思 拓展的例題不足; 2、學(xué)生主體性體現(xiàn)不到位. 展開更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來(lái)源于二一教育資源庫(kù)