資源簡介 (共29張PPT)(浙教版)七年級下1.5平行線的性質(第1課時)相交線與平行線第1章“一”教學目標01新知導入02新知講解03課堂練習04課堂總結05作業布置06目錄07內容總覽教學目標1.理解“兩直線平行,同位角相等”這一平行線的性質;2.會應用這一性質進行簡單的角度計算.新知導入到目前為止,我們學習了哪些判定兩直線平行的方法?(1)定義法.(2)基本事實的推論:若 a∥b,b∥c,則 a∥c.(3)判定方法1:同位角相等,兩直線平行.(4)判定方法2:內錯角相等,兩直線平行.(5)判定方法3:同旁內角互補,兩直線平行.新知導入如圖放縮尺(局部)的各組對邊互相平行。圖中∠α,∠β,∠γ相等嗎 利用同位角相等,可以判定兩條直線平行。反過來,如果兩條直線平行,同位角之間有怎樣的關系 任意畫兩條互相平行的直線,再任意畫一條直線與這兩條平行線相交。測量同位角的度數,你發現了什么 與其他同學的發現相同嗎 新知講解任務:平行線的性質合作學習:用數學繪圖軟件畫出如圖的圖形,直線EF//GH,直線AD與直線EF,GH分別相交于點B,C。(1)測量∠ABF,∠ACH。然后轉動直線AD,觀察并比較∠ABF和∠ACH的大小。你發現了什么 新知講解合作學習:∠ABF始終等于∠ACH。用數學繪圖軟件畫出如圖的圖形,直線EF//GH,直線AD與直線EF,GH分別相交于點B,C。(2)如果設置直線EF與GH不平行,(1)中所得的結論仍成立嗎 請作圖驗證。新知講解合作學習:不成立,∠ABF ≠∠ACH。新知講解平行線的性質1:兩條平行直線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等符號語言:∵a∥b(已知),∴ ∠1=∠2(兩直線平行,同位角相等).abc21新知講解注意:(1)兩條直線平行是前提,只有在這個前提下才有同位角相等;(2)書寫時,順序不能顛倒,與判定不能混淆.新知講解例1 如圖,梯子的各條橫檔互相平行,∠1=100°。求∠2的度數。解:已知AB//CD,根據“兩直線平行,同位角相等”,得∠3=∠1=100°。由平角的意義,得∠2+∠3=180°,所以∠2=180°-∠3=180°-100°=80°。新知講解例2 如圖,已知∠1=∠2。若直線b⊥m,則直線a⊥m。請說明理由。解:如圖,已知∠1=∠2,根據“同位角相等,兩直線平行”,得a//b。由a//b,再根據“兩直線平行,同位角相等”,得∠3=∠4。又已知b⊥m,根據垂直的意義,知∠4=90°,所以∠3=90°,所以a⊥m(垂直的定義)。新知講解平行線的性質與平行線的判定的區別:(1)平行線的判定是根據兩角的數量關系得到兩條直線的位置關系,而平行線的性質是根據兩條直線的位置關系得到兩角的數量關系;(2)平行線的判定的條件是平行線的性質的結論,而平行線的判定的結論是平行線的性質的條件.【知識技能類作業】必做題:課堂練習1.如圖,已知直線a∥b,∠1=60°,則∠2的度數是( )A.45° B.55° C.60° D.120°C【知識技能類作業】必做題:課堂練習2.如圖,直線AB∥CD,∠B=50°,∠C=40°,則∠E等于( )A.70° B.80°C.90° D.100°C【知識技能類作業】必做題:課堂練習3.如圖,直線a// b,將三角尺直角頂點放在直線b上.若∠1=50°,則∠2的度數是( )A.20° B.30° C.40° D.50°C4.如圖,AB// CD,AE // CF,∠BAE=75°,則∠DCF 的度數為( )A.65° B.70° C.75° D.105°課堂練習C【知識技能類作業】選做題:5.如圖,AD∥BC,AC平分∠BAD交BC于C,∠B=50°,求∠ACB的度數.課堂練習解:∵AD∥BC,∴∠B+∠BAD=180°,∠ACB=∠DAC,又∵∠B=50°,∴∠BAD=130°,又∵AC是∠BAD的角平分線,∴∠BAC=∠DAC=65°,∴∠ACB=65°.【綜合拓展類作業】DABC課堂總結平行線的性質1:兩條平行直線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等符號語言:∵a∥b(已知),∴ ∠1=∠2(兩直線平行,同位角相等).abc21板書設計平行線的性質1:兩條平行直線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等課題:1.5平行線的性質(第1課時)【知識技能類作業】必做題:作業布置1.如圖,平行線 a , b 被直線 c 所截.若∠1=142°,則∠2的度數是( )A.142° B.132° C.58° D.38°A2.如圖,AB//CD,∠1=65°,則∠2 的度數是( )A.105° B.115° C.125° D.135°【知識技能類作業】必做題:作業布置B【知識技能類作業】必做題:作業布置3.如圖,把一塊含45°角的直角三角板的直角頂點放在直尺的一邊上,如果∠1=33°,那么∠2為( )A.33° B.57° C.67° D.60°B【知識技能類作業】選做題:作業布置4.一副三角尺按如圖所示方式放置,斜邊平行,則∠1的度數為( )A.5° B.10° C.15° D.20°C【知識技能類作業】選做題:作業布置5.用一張等寬的紙條折成如圖所示的圖案,若∠1=20°,則∠2 的度數為 。140°6.如圖,直線AB∥CD,DE∥BC.(1)判斷∠B與∠D的數量關系,并說明理由.(2)設∠B=(2x+15)°,∠D=(65-3x)°,求∠1的度數.【綜合拓展類作業】作業布置解:(1)∠B=∠D.理由如下:∵AB∥CD,∴∠B=∠1.∵DE∥BC,∴∠1=∠D.∴∠B=∠D.6.如圖,直線AB∥CD,DE∥BC.(1)判斷∠B與∠D的數量關系,并說明理由.(2)設∠B=(2x+15)°,∠D=(65-3x)°,求∠1的度數.【綜合拓展類作業】作業布置解:(2)由2x+15=65-3x,解得x=10,∴∠B=35°.∴∠1=35°.Thanks!2https://www.21cnjy.com/recruitment/home/admin中小學教育資源及組卷應用平臺分課時教學設計《1.5平行線的性質(第1課時)》教學設計課型 新授課√ 復習課口 試卷講評課口 其他課口教學內容分析 本節課的內容包括:掌握平行線的性質定理1:兩條平行直線被第三條直線所截,同位角相等.本節課的學習內容是平行線的性質,從平行線的判定引入對平行線性質的研究,通過度量、猜想、驗證得到性質1,為后面學習平行線的性質定理2和3奠定基礎.學習者分析 學生在本節課之前已經學過了相交線,平行線及判定,已經具備學習本節課的知識基礎,但是七年級學生歸納能力,邏輯推理能力較弱,所以本節課可以采取探究、歸納相結合的方法使學生掌握重點突破難點,培養學生歸納的能力以及邏輯推理能力。教學目標 1.理解“兩直線平行,同位角相等”這一平行線的性質; 2.會應用這一性質進行簡單的角度計算.教學重點 掌握平行線的性質定理1。教學難點 理解并應用平行線的性質定理1解決問題。學習活動設計教師活動學生活動環節一:新知導入教師活動1: 到目前為止,我們學習了哪些判定兩直線平行的方法? (1)定義法. (2)基本事實的推論:若 a∥b,b∥c,則 a∥c. (3)判定方法1:同位角相等,兩直線平行. (4)判定方法2:內錯角相等,兩直線平行. (5)判定方法3:同旁內角互補,兩直線平行. 如圖放縮尺(局部)的各組對邊互相平行。圖中∠α,∠β,∠γ相等嗎 利用同位角相等,可以判定兩條直線平行。反過來,如果兩條直線平行,同位角之間有怎樣的關系 學生活動1: 學生回憶,積極舉手回答.活動意圖說明: 通過回憶平行線的判定方法,為本節課的學習墊定了知識基礎,再設置問題,激發學生的學習興趣,自然切入本節課所要學習的內容.環節二:平行線的性質教師活動2: 合作學習: 任意畫兩條互相平行的直線,再任意畫一條直線與這兩條平行線相交。 測量同位角的度數,你發現了什么 與其他同學的發現相同嗎 用數學繪圖軟件畫出如圖的圖形,直線EF//GH,直線AD與直線EF,GH分別相交于點B,C。 (1)測量∠ABF,∠ACH。然后轉動直線AD,觀察并比較∠ABF和∠ACH的大小。你發現了什么 ∠ABF始終等于∠ACH。 (2)如果設置直線EF與GH不平行,(1)中所得的結論仍成立嗎 請作圖驗證。 不成立,∠ABF ≠∠ACH。 平行線的性質1: 兩條平行直線被第三條直線所截,同位角相等. 簡單說成:兩直線平行,同位角相等。 符號語言: ∵a∥b(已知), ∴ ∠1=∠2 (兩直線平行,同位角相等). 注意: (1)兩條直線平行是前提,只有在這個前提下才有同位角相等; (2)書寫時,順序不能顛倒,與判定不能混淆. 例1 如圖,梯子的各條橫檔互相平行,∠1=100°。求∠2的度數。 解:已知AB//CD,根據“兩直線平行,同位角相等”, 得∠3=∠1=100°。 由平角的意義,得∠2+∠3=180°, 所以∠2=180°-∠3=180°-100°=80°。 例2 如圖,已知∠1=∠2。若直線b⊥m,則直線a⊥m。請說明理由。 解:如圖,已知∠1=∠2,根據“同位角相等,兩直線平行”,得a//b。 由a//b,再根據“兩直線平行,同位角相等”, 得∠3=∠4。 又已知b⊥m,根據垂直的意義,知∠4=90°, 所以∠3=90°,所以a⊥m(垂直的定義)。 平行線的性質與平行線的判定的區別: (1)平行線的判定是根據兩角的數量關系得到兩條直線的位置關系,而平行線的性質是根據兩條直線的位置關系得到兩角的數量關系; (2)平行線的判定的條件是平行線的性質的結論,而平行線的判定的結論是平行線的性質的條件.學生活動2: 學生小組合作,畫圖并進行度量. 學生根據度量結果,進行回答。 學生根據上面的探究,得到平行線的性質1:兩直線平行,同位角相等。 學生獨立完成例題,并展示答案。 學生與教師一起總結平行線的性質與平行線的判定的區別。 活動意圖說明: 教師帶領學生共同探究,通過改變截線的位置多次測量,總結出共性結論,并逆向探究,確認結論的唯一性,得出平行線中同位角的度數的數量關系.教學中可讓學生歸納性質1并用符號語言表述,鍛煉學生將圖形語言轉化為文字語言和符號語言的能力;最后通過例題,培養學生解決問題的能力。板書設計 課題:1.5平行線的性質(第1課時) 平行線的性質1: 兩條平行直線被第三條直線所截,同位角相等. 簡單說成:兩直線平行,同位角相等課堂練習 【知識技能類作業】 必做題: 1.如圖,已知直線a∥b,∠1=60°,則∠2的度數是( C ) A.45° B.55° C.60° D.120° 2.如圖,直線AB∥CD,∠B=50°,∠C=40°,則∠E等于( C ) A.70° B.80° C.90° D.100° 3.如圖,直線a// b,將三角尺直角頂點放在直線b上.若∠1=50°,則∠2的度數是( C ) A.20° B.30° C.40° D.50° 選做題: 4.如圖,AB// CD,AE // CF,∠BAE=75°,則∠DCF 的度數為( C ) A.65° B.70° C.75° D.105° 【綜合拓展類作業】 5.如圖,AD∥BC,AC平分∠BAD交BC于C,∠B=50°,求∠ACB的度數. 解:∵AD∥BC, ∴∠B+∠BAD=180°,∠ACB=∠DAC, 又∵∠B=50°,∴∠BAD=130°, 又∵AC是∠BAD的角平分線, ∴∠BAC=∠DAC=65°, ∴∠ACB=65°.課堂總結 平行線的性質1: 兩條平行直線被第三條直線所截,同位角相等. 簡單說成:兩直線平行,同位角相等 符號語言: ∵a∥b(已知), ∴ ∠1=∠2(兩直線平行,同位角相等).作業設計 【知識技能類作業】 必做題: 1.如圖,平行線 a , b 被直線 c 所截.若∠1=142°,則∠2的度數是( A ?。? A.142° B.132° C.58° D.38° 2.如圖,AB//CD,∠1=65°,則∠2 的度數是( B ) A.105° B.115° C.125° D.135° 3.如圖,把一塊含45°角的直角三角板的直角頂點放在直尺的一邊上,如果∠1=33°,那么∠2為( B ) A.33° B.57° C.67° D.60° 選做題: 4.一副三角尺按如圖所示方式放置,斜邊平行,則∠1的度數為( C ) A.5° B.10° C.15° D.20° 5.用一張等寬的紙條折成如圖所示的圖案,若∠1=20°,則∠2 的度數為 140 。 【綜合拓展類作業】 6.如圖,直線AB∥CD,DE∥BC. (1)判斷∠B與∠D的數量關系,并說明理由. (2)設∠B=(2x+15)°,∠D=(65-3x)°,求∠1的度數. 解:(1)∠B=∠D. 理由如下:∵AB∥CD,∴∠B=∠1. ∵DE∥BC,∴∠1=∠D. ∴∠B=∠D. (2)由2x+15=65-3x,解得x=10, ∴∠B=35°. ∴∠1=35°.教學反思 本節課通過度量含有平行線的“三線八角”中角的度數,猜想同位角的關系,得出平行線的性質1,平行線的性質是幾何證明的基礎,教學中注意基本的推理格式的書寫,培養學生的邏輯思維能力,鼓勵學生勇于嘗試.在課堂上,力求體現學生的主體地位,把課堂交給學生,讓學生在動口、動手、動腦中學數學.21世紀教育網(www.21cnjy.com)中小學教育資源及組卷應用平臺學 科 數學 年 級 七年級 設計者教材版本 浙教版 冊、章 下冊、第1章課標要求 【內容要求】1.相交線與平行線(1)理解對頂角的概念,探索并掌握對頂角相等的性質。(2)理解垂線、垂線段等概念,能用三角板或量角器過一點畫已知直線的垂線。(3)能用尺規作圖:過一點作已知直線的垂線。(4)掌握基本事實:同一平面內,過一點有且只有一條直線與已知直線垂直。(5)理解點到直線的距離的意義,能度量點到直線的距離。(6)識別同位角、內錯角、同旁內角。(7)理解平行線的概念。(8)掌握平行線基本事實I:過直線外一點有且只有一條直線與這條直線平行。(9)掌握平行線基本事實Ⅱ:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(10)探索并證明平行線的判定定理:兩條直線被第三條直線所截,如果內錯角相等(或同旁內角互補),那么這兩條直線平行。(11)掌握平行線的性質定理I:兩條平行直線被第三條直線所截,同位角相等。*了解定理的證明。(12)探索并證明平行線的性質定理Ⅱ:兩條平行直線被第三條直線所截,內錯角相等(或同旁內角互補)。(13)能用三角板和直尺過已知直線外一點畫這條直線的平行線。(14)能用尺規作圖:過直線外一點作這條直線的平行線。(15)了解平行于同一條直線的兩條直線平行。2.平移(1)通過具體實例認識平移,探索它的基本性質:一個圖形和它經過平移所得的圖形中,兩組對應點的連線平行(或在同一條直線上)且相等。(2)認識并欣賞平移在自然界和現實生活中的應用。(3)運用圖形的平移進行圖案設計。【學業要求】理解兩條直線平行或垂直的關系,形成和發展抽象能力;在直觀理解和掌握圖形與幾何基本事實的基礎上,經歷得到和驗證數學結論的過程,感悟具有傳遞性的數學邏輯,形成幾何直觀和推理能力;經歷尺規作圖的過程,增強動手能力,能想象出通過尺規作圖的操作所形成的圖形,理解尺規作圖的基本原理與方法,發展空間觀念和空間想象力。內容分析 本章主要內容:(1)直線的相交;(2)同位角、內錯角、同旁內角;(3)平行線;(4)平行線的判定;(5)平行線的性質;(6)圖形的平移。相交線與平行線是“圖形與幾何”所要研究的基本問題,本章在學生具有知識和經驗的基礎上,繼續研究平面內兩條直線的位置關系,第1節:研究了兩條直線相交的情形,探究了兩條直線相交所成的角的位置和大小關系,給出了對頂角的概念,得出了“對頂角相等”的結論。垂直作為兩條直線相交的特殊情形,與它有關的概念和結論也是學面直角坐標系”的直接基礎,本章對垂直的情形進行了專門的研究,探索得出了“過一點有且只有一條直線與已知直線垂直”“垂線段最短”等結論,并給出點到直線的距離的概念,為學面直角坐標系中確定點的坐標打下基礎。第2節:接下來研究了兩條直線被第三條直線所截的情形,給出了同位角、內錯角、同旁內角的概念,為接下來研究平行做準備。第3、4節:對于平面內兩條直線平行的位置關系,首先引入一個基本事實(平行公理),即過直線外一點有且只有一條直線與已知直線平行,以此為出發點探討平行線的判定和平行線的性質,對于平行線的判定,先從平行線的畫法得出“同位角相等,兩直線平行”,并由此推理得出“內錯角相等,兩直線平行”和“同旁內角互補,兩直線平行”。第5節:平行線的性質也是類似,即通過探究得出性質1,再由性質1推理得出性質2和性質3.第6節:有關平移的內容。使圖形動起來,有助于在運動變化的過程中發現圖形不變的幾何性質。平移的內容一方面是將其作為平行線的一個應用,另一方面引入平移,可以盡早滲透圖形變化的思想,使學生盡早接觸利用平移分析和解決問題的方法。學情分析 平面內兩條直線的位置關系有相交和平行,學生在之前的學習中已經了解了平行線的概念,本章通過學習同位角、內錯角、同旁內角的概念,引導學生從角的方面來研究平行線的判定和性質。七年級的孩子思維活躍,模仿能力強,已經具備了一定的生活經驗和數學活動經驗,并對幾何圖形有了一定的認識,但邏輯思維和交流意思方面發展不夠均衡,所以要重視學生自主探究、合作交流、創新意識的培養,所以要充分利用七年級學生的心理特點,形成勤動手、勤動腦、勤交流的氣氛。單元目標 教學目標理解對頂角的概念,探索并掌握對頂角相等的性質。理解垂線、垂線段等概念,能用三角尺或里角器過一點畫已知直線的垂線。理解點到直線的距離的意義,能度量點到直線的距離。掌握基本事實:過一點有且只有一條直線與已知直線垂直。會識別同位角、內錯角、同旁內角。理解平行線概念,能用三角尺和直尺過已知直線外一點畫這條直線的平行線,了解平行于同一條直線的兩條直線平行;掌握基本事實:過直線外一點有且只有一條直線與這條直線平行。探索并證明平行線的判定定理:兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行兩條直線被第三條直線所截,如果內錯角相等(或同旁內角互補),那么兩直線平行。掌握平行線的性質定理:兩條平行直線被第三條直線所截,同位角相等;兩條平行直線被第三條直線所截,內錯角相等(或同旁內角互補)。8.通過具體實例認識平移,探索它的基本性質:一個圖形和它經過平移所得的圖形中,兩組時應點的連線平行(或在同一條直線上)且相等,認識并欣賞平移在自然界和現實生活中的應用運用圖形的平移進行圖案設計。(二)教學重點、難點教學重點:垂直的概念及平行線的判定及性質。教學難點:平行線的判定及性質的靈活運用。單元知識結構框架及課時安排 單元知識結構框架 (二)課時安排課時編號單元主要內容課時數1.1直線的相交2課時1.2同位角、內錯角、同旁內角1課時1.3平行線1課時1.4平行線的判定2課時1.5平行線的性質2課時1.6圖形的平移1課時達成評價 課題課時目標達成評價評價任務1.1直線的相交(第1課時)1.理解并掌握對頂角的概念;2.掌握對頂角的性質,并能運用對頂角的性質進行角的計算及解決簡單實際問題.1.理解并掌握對頂角的概念;2.掌握對頂角的性質3.能運用對頂角的性質進行角的計算及解決簡單實際問題.任務一:通過現實生活實例,引出新課任務二:兩條直線相交任務三:對頂角的概念任務四:對頂角的性質1.1直線的相交(第2課時)1.理解垂線的有關概念、性質及畫法;2.知道垂線段和點到直線的距離的概念,并會應用解決問題. 1.理解垂線的有關概念、性質及畫法;2.知道垂線段和點到直線的距離的概念,并會應用解決問題. 任務一:設置問題,引出新課任務二:垂線與垂直的概念任務三:垂線的畫法及性質1.2同位角、內錯角、同旁內角1.理解同位角、內錯角、同旁內角的概念;2.結合圖形識別同位角、內錯角、同旁內角;3.從復雜圖形分解為基本圖形的過程中,體會化繁為簡,化難為易的化歸思想.1.理解同位角、內錯角、同旁內角的概念;2.會結合圖形識別同位角、內錯角、同旁內角;3.從復雜圖形分解為基本圖形的過程中,體會化繁為簡,化難為易的化歸思想.任務一:通過風箏骨架,引出新課任務二:同位角、內錯角、同旁內角1.3平行線1.理解平行線的概念;2.掌握平行線的畫法及平行公理及其推論.1.理解平行線的概念;2.掌握平行線的畫法及平行公理及其推論.任務一:通過生活實例,引出新課任務二:平行線的相關概念任務三:平行線的畫法及基本事實1.4平行線的判定(第1課時)1.掌握平行線判定方法1,會運用判定方法1來判斷兩條直線是否平行;2.掌握垂直于同一條直線的兩條直線互相平行; 3.能夠根據平行線的判定方法1進行簡單的推理. 1.掌握平行線判定方法1,會運用判定方法1來判斷兩條直線是否平行;2.掌握垂直于同一條直線的兩條直線互相平行; 3.能夠根據平行線的判定方法1進行簡單的推理. 任務一:通過生活實例,引出新課任務二:平行線的判定定理1.4平行線的判定(第2課時)1.掌握平行線的判定方法:內錯角相等,兩直線平行;2.掌握平行線的判定方法:同旁內角互補,兩直線平行;3.能夠根據平行線的判定方法進行簡單的推理. 1.掌握平行線的判定方法:內錯角相等,兩直線平行;2.掌握平行線的判定方法:同旁內角互補,兩直線平行;3.能夠根據平行線的判定方法進行簡單的推理. 任務一:回憶已經學行線的判定方法任務二:平行線的判定定理1.5平行線的性質(第1課時)1.理解“兩直線平行,同位角相等”這一平行線的性質;2.會應用這一性質進行簡單的角度計算. 1.理解“兩直線平行,同位角相等”這一平行線的性質;2.會應用這一性質進行簡單的角度計算.任務一:回憶已經學行線的判定方法任務二:平行線的性質1.5平行線的性質(第2課時)1.掌握平行線的性質“兩直線平行,內錯角相等”“兩直線平行,同旁內角互補”;2.能夠根據平行線的性質進行簡單的推理. 1.掌握平行線的性質“兩直線平行,內錯角相等”“兩直線平行,同旁內角互補”;2.能夠根據平行線的性質進行簡單的推理. 任務一:回憶平行線的性質定理1任務二:平行線的性質1.6圖形的平移1.理解平移的概念及決定因素;2.會找出平移前后圖形中對應點、對應角和對應線段;3.掌握平移的性質及其運用. 1.理解平移的概念及決定因素;2.會找出平移前后圖形中對應點、對應角和對應線段;3.掌握平移的性質及其運用. 任務一:觀察纜車的運動任務二:平移的概念任務三:平移作圖任務四:平移的性質《第1章 》相交線與平行線 單元教學設計HYPERLINK "http://21世紀教育網(www.21cnjy.com)" 21世紀教育網(www.21cnjy.com) 展開更多...... 收起↑ 資源列表 1.5平行線的性質(第1課時) 教案.docx 1.5平行線的性質(第1課時).pptx 第1章 相交線與平行線 大單元教學設計.doc 縮略圖、資源來源于二一教育資源庫