中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

2025年高考數學三輪沖刺-“8+3+3”小題速練(9) (含解析)

資源下載
  1. 二一教育資源

2025年高考數學三輪沖刺-“8+3+3”小題速練(9) (含解析)

資源簡介

2025高考數學三輪沖刺-“8+3+3”小題速練(9)
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.在一組樣本數據、、、、、、、不全相等)的散點圖中,若所有的樣本點都在直線上,則這組樣本數據的相關系數為( )
A. B. C. D.
2.若橢圓的離心率為,則橢圓的長軸長為( )
A. 6 B. 或 C. D. 或
3.最早的測雨器記載見于南宋數學家秦九韶所著的《數書九章》(1247年).該書第二章為“天時類”,收錄了有關降水量計算的四個例子,分別是“天池測雨”、“圓罌測雨”、“峻積驗雪”和“竹器驗雪”.如圖“竹器驗雪”法是下雪時用一個圓臺形的器皿收集雪量(平地降雪厚度器皿中積雪體積除以器皿口面積),已知數據如圖(注意:單位),則平地降雪厚度的近似值為( )
A. B. C. D.
4.設,若,則( )
A. 5 B. 6 C. 7 D. 8
5.某校高三年級800名學生在高三的一次考試中數學成績近似服從正態分布,若某學生數學成績為102分,則該學生數學成績的年級排名大約是( )
(附:,,)
A. 第18名 B. 第127名 C. 第245名 D. 第546名
6.聲音是由于物體的振動產生的能引起聽覺的波,我們聽到的聲音多為復合音.若一個復合音的數學模型是函數,則下列結論正確的是( )
A. 的一個周期為 B. 的最大值為
C. 的圖象關于直線對稱 D. 在區間上有3個零點
7.已知球的直徑為是球面上兩點,且,則三棱錐的體積( )
A. B. C. D.
8.幾何學史上有一個著名的米勒問題:“設點是銳角的一邊上的兩點,試在邊上找一點,使得最大.”如圖,其結論是:點為過兩點且和射線相切的圓與射線的切點.根據以上結論解決以下問題:在平面直角坐標系xoy中,給定兩點,點在軸上移動,當取最大值時,點的橫坐標是( )
A. 2 B. 6 C. 2或6 D. 1或3
二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.
9.已知復數,,,則( )
A. B. 的實部依次成等比數列
C. D. 的虛部依次成等差數列
10.已知為坐標原點,點為拋物線:焦點,點,直線:交拋物線于,兩點(不與點重合),則以下說法正確的是( )
A.
B. 存在實數,使得
C. 若,則
D. 若直線與的傾斜角互補,則
11.已知函數定義域為R,滿足,當時, .若函數的圖象與函數的圖象的交點為,,,(其中表示不超過的最大整數),則( )
是偶函數 B.
C. D.
三、填空題:本題共3小題,每小題5分,共15分.
12.設集合,,則___________.
13.函數,若,則的最小值為___________.
14.已知反比例函數圖象上三點的坐標分別,與,過B作直線的垂線,垂足為Q.若恒成立,則a的取值范圍為___________
參考答案與詳細解析
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.【答案】C
【解析】因為所有樣本點都在直線上,所以相關系數滿足.
又因為,所以,所以.
故選:C.
2.【答案】D
【解析】當焦點在軸時,由,解得,符合題意,此時橢圓的長軸長為;
當焦點在軸時,由,解得,符合題意,此時橢圓的長軸長為.
故選:D.
3.【答案】C
【解析】如圖所示,可求得器皿中雪表面的半徑為,
所以平地降雪厚度的近似值為.
故選:C
4.【答案】A
【解析】展開式第項,
∵,∴,
∴.
故選:A.
5.【答案】B
【解析】因為成績近似服從正態分布,,則,
且,
所以,
因此該校數學成績不低于102分的人數即年級排名大約是.
故選:B.
6.【答案】D
【解析】A.,故A錯誤;
B.,當,時,取得最大值1,,當,時,即,時,取得最大值,所以兩個函數不可能同時取得最大值,所以的最大值不是,故B錯誤;
C.,所以函數的圖象不關于直線對稱,故C錯誤;
D.,即,,
即或,解得:,
所以函數在區間上有3個零點,故D正確.
故選:D
7.【答案】C
【解析】由題意可知為正三角形,設其外接圓圓心為M,半徑為r,
則,且平面,
所以,故C到平面的距離為,
所以三棱錐的體積為.
故選:C
8.【答案】A
【解析】由題意知,點為過,兩點且和軸相切的圓與軸的切點,
已知,則線段的中點坐標為,直線斜率為,
線段的垂直平分線方程為,即.
所以以線段為弦的圓的圓心在直線上,
所以可設圓心坐標為,
又因為圓與軸相切,所以圓的半徑,又因為,
所以,解得或,
即切點分別為和,兩圓半徑分別為.
由于圓上以線段(定長)為弦所對的圓周角會隨著半徑增大而圓周角角度減小,
且過點的圓的半徑比過的圓的半徑大,
所以,故點為所求,
所以當取最大值時,點的橫坐標是.
故選:A.
二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.
9.【答案】ABC
【解析】因為,,所以,所以,故A正確;
因為,,的實部分別為1,3,9,所以,,的實部依次成等比數列,故B正確;
因為,,的虛部分別為,,1,所以,,的虛部依次不成等差數列,故D錯誤;
,故C正確.
故選:ABC.
10.【答案】ACD
【解析】由已知,拋物線:,∴,,焦點,
不妨設為,,設,到準線的距離分別為,,
對于A,∵由標準方程知,拋物線頂點在原點,開口向右,,
∴由拋物線的定義,故選項A正確;
對于B,消去,化簡得(),
則,,∵,∴,∴,
∵,,∴,
∴,∴,
∴不存在實數,使得,選項B錯誤;
對于C,,,
∵,∴,∴
又∵由選項B判斷過程知,,
∴解得,,或,,,
∴若,則,選項C正確;
對于D,由題意,,,,,
直線與的傾斜角互補時,斜率均存在,且,
∴,代入,,化簡得,
由選項B的判斷知,,
∴,∴,故選項D正確.
故選:ACD.
11.【答案】BC
【解析】函數,顯然,而,即,因此不是偶函數,A錯誤;
函數定義域為,滿足,當時,,
當時,,,
當時,,,
當時,,,
當時,,,
因此當時,函數在上遞減,
在上遞增,當時,取得最大值,
當時,,,
當時,,,
當時,,,
因此當時,函數,
在同一坐標平面內作出函數的部分圖象,如圖,
當時,函數的圖象有唯一公共點,
因為,因此,,而滿足的整數有個,即,B正確;
顯然,
所以,C正確;
,數列是首項為,公比為的等比數列,
所以,D錯誤.
故選:BC
三、填空題:本題共3小題,每小題5分,共15分.
12.【答案】
【解析】在中,由得,即,
又由可得:,解得:,即,
故.
故答案為:
13.【答案】
【解析】因為的定義域為,
,所以在為增函數,
,所以,
又,在為增函數,所以,即,
因為,,當且僅當,即時,等號成立,
所以的最小值為.
故答案為:
14.【答案】
【解析】由題意得:反比例函數為,因為點P在反比例函數圖象上,所以,,所以
,
記,由題意得:恒成立,
當,則,解得:,由于,故;
下面證明當時,恒成立,即
因為是開口向上的二次函數,
所以

②,
令,則,開口向下,對稱軸為,故在上單調遞減,故.
所以當時,恒成立,故a的取值范圍是
故答案為:

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 罗江县| 中阳县| 监利县| 临安市| 陆川县| 都兰县| 赤城县| 昔阳县| 建瓯市| 天柱县| 新和县| 富宁县| 大英县| 菏泽市| 青海省| 册亨县| 嘉善县| 天峨县| 玛曲县| 兴安盟| 资溪县| 信宜市| 无极县| 沅陵县| 桃江县| 九龙坡区| 定陶县| 进贤县| 宜阳县| 榆社县| 内丘县| 崇文区| 鄂伦春自治旗| 镇康县| 元朗区| 盘山县| 老河口市| 尉犁县| 台中县| 历史| 延寿县|