中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

人教A版 必修 第一冊5.4.3 正切函數的性質與圖象 課件(共14張PPT)

資源下載
  1. 二一教育資源

人教A版 必修 第一冊5.4.3 正切函數的性質與圖象 課件(共14張PPT)

資源簡介

(共14張PPT)
溫故知新
設 是一個任意角, ,它的終邊 與單位圓相交于點 ,
把點 的縱坐標與橫坐標的比值 叫做 的正切函數,記作 ,
即 .
1.正切函數的定義是什么?
通常記作:正切函數
2.正切函數的定義域是什么?
思路共研
問題1:根據研究正弦函數和余弦函數的經驗,你認為應該如何研究正切函數的圖象和性質?
問題2:你能用不同的方法研究正切函數嗎?
作正切函數圖象→根據圖象研究性質
正切函數定義→性質→研究圖象
(以數解形)
(以形助數)
數形結合
新知探究
誘導公式
誘導公式
奇函數
新知探究
問題3:你認為正切函數的周期性和奇偶性對研究它的圖象及其他性質會有什么幫助?
奇函數
周期π
新知探究
問題4:正切曲線具有怎樣的特征?
正切曲線是由被與y軸平行的
一系列直線
所隔開的無窮多支形狀相同
的曲線組成的.
漸近線
新知探究
問題5:借助正切曲線,你能得出正切函數的其他性質嗎?
周期性
奇函數
單調性
值域
對稱性
漸近線
典例精析
【例1】求函數 的定義域、周期及單調區間.
1.求定義域體現了怎樣的思想?你能不能用這個思想來求周期和單調區間?
思考:
整體代換的思想
2.你能歸納出 的周期公式?
3.你能總結下求函數 的單調區間的步驟嗎?
學以致用
求函數 的定義域、周期及單調區間.
素養提升
認真觀察課本上的圖5.4-9,你能設計一個問題嗎?
思考:
達標測評
總結升華
漸近線
對稱性
解析式
y=tan x
圖 象
定義域
值 域
R
奇偶性
奇函數
單調性
周期性
總結升華
數形結合 類比
整體代換 轉化
一個圖象
六條性質
四個思想
周期性 奇偶性
單調性 值 域
對稱性 漸近線
正切曲線
分層作業
必做題:課本213頁練習2題,習題5.4第7、9
選做題:課本習題5.4第13、14題
02
01

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 赫章县| 台湾省| 临安市| 教育| 金川县| 铁力市| 平利县| 淮南市| 佳木斯市| 班玛县| 阿瓦提县| 沾益县| 永泰县| 寿阳县| 大英县| 镇远县| 来安县| 南郑县| 南平市| 炉霍县| 迁西县| 金坛市| 汝城县| 潮安县| 天水市| 太仓市| 永泰县| 饶河县| 康平县| 伊春市| 黄平县| 垫江县| 赤壁市| 东阳市| 凯里市| 宜兰市| 长治市| 普兰店市| 罗田县| 凌云县| 剑阁县|