中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

第07講 導(dǎo)數(shù)中的切線問題及應(yīng)用--2024屆高三高三數(shù)學(xué)一輪復(fù)習(xí)(PDF版,含答案)

資源下載
  1. 二一教育資源

第07講 導(dǎo)數(shù)中的切線問題及應(yīng)用--2024屆高三高三數(shù)學(xué)一輪復(fù)習(xí)(PDF版,含答案)

資源簡(jiǎn)介

第07講
導(dǎo)數(shù)中的切線問題及應(yīng)用
一、知識(shí)點(diǎn)
1.在點(diǎn)的切線方程
切線方程y-f()=f()(-x)的計(jì)算:函數(shù)y=f(x)在點(diǎn)A(co,f(xo)處的切線方程為y-f(x)=f(
)(x一,抓住關(guān)鍵=)
k=f(xo)
2.過點(diǎn)的切線方程
設(shè)切點(diǎn)為P(o,),則斜率k=f'(),過切點(diǎn)的切線方程為:y一=f()(x一xo),
又因?yàn)榍芯€方程過點(diǎn)A(m,n),所以n-yo=f()(m一xo)然后解出的值.(有幾個(gè)值,就有幾條切線)
注意:在做此類題目時(shí)要分清題目提供的點(diǎn)在曲線上還是在曲線外.
3.題型歸納
【題型一】三次函數(shù)切線問題
【題型二】指對(duì)函數(shù)切線問題
【題型三】公切線問題
【題型四】與切線有關(guān)的距離問題
9
【題型一】三次函數(shù)切線問題
例1.若過點(diǎn)P(1,t)可作出曲線y=x的三條切線,則實(shí)數(shù)t的取值范圍是()
A.(-o,1)
B.(0,+∞)
C.(0,1)
D.{0,1}
例2.過點(diǎn)P(0,-1)有三條直線和曲線y=x3+ax2+bx(6∈)相切,則實(shí)數(shù)a.的取值范圍是()
A.(1,+o∞)
B.(3,十∞)
0.(-∞,1)
D.(-∞,3)
例3.若過點(diǎn)(a,b)(a>0)可以作曲線y=x3-3x的三條切線,則()
A.b<-3a
B.-3aa-3a
D.b=-3a或b=a3-3a
【題型二】指對(duì)函數(shù)切線問題
例4.若過點(diǎn)(a,b)可以作曲線y=e的兩條切線,則()
A.e°B.eC.0D.0<
例5.當(dāng)a>0時(shí),過點(diǎn)(a,a+b)均可以作曲線y=lnx的兩條切線,則b的取值范圍是()
A.(-∞,-1)
B.(-0,-1]
C.(-1,+∞)
D.[-1,+∞)
例6.已知f(x)=xlnx,若過一點(diǎn)(m,n)可以作出該函數(shù)的兩條切線,則下列選項(xiàng)一定成立的是()
A.nB.n>mlnm
c.名-eD.m<1
例7.若過點(diǎn)(m,n)可以作曲線y=a(a>0且a≠1)的兩條切線,則()
A.loganB.logan>m
C.logan=m
D.logn與m的大小關(guān)系與a有關(guān)
例8.(多選)已知函數(shù)f()=二,過點(diǎn)(a,b)作曲線f()的切線,下列說法正確的是()
A.當(dāng)a=0,b=0時(shí),有且僅有一條切線
B.當(dāng)a=0時(shí),可作三條切線,則0C.當(dāng)a=2,b>0時(shí),可作兩條切線
D.當(dāng)0<0<2時(shí),可作兩條切線,則b的取值范圍為4.2或&
例9.(多選)已知函數(shù)f(x)=e1+lx,則過點(diǎn)(a,b)恰能作曲線y=f(x)的兩條切線的充分條件可以是()
A.b=2a-1>1
B.b=2a-1<1
C.2a-1例10.(多選)過平面內(nèi)一點(diǎn)P作曲線y=|lx兩條互相垂直的切線l,2,切點(diǎn)為B、P(R、P不重合),設(shè)直線,
2分別與y軸交于點(diǎn)A,B,則下列結(jié)論正確的是()
A.乃、P兩點(diǎn)的橫坐標(biāo)之積為定值
B.直線PP的斜率為定值
C.線段AB的長(zhǎng)度為定值
D.三角形ABP面積的取值范圍為(0,1]
52第01講
三種重要不等式及其
+y2=6osig+號(hào)sn9+號(hào)in8coa0=1+
應(yīng)用
有in29-30os29+號(hào)
例1.【答案】BC
=號(hào)+號(hào)i(20-晉))∈[號(hào),2],所以當(dāng)=
3
【分析】根據(jù)基本不等式成立的條件“一正二定三
相等”,逐一驗(yàn)證可得選項(xiàng)。
時(shí)滿足等式,但是x2+y2>1不成立,所
3
【解析】對(duì)于A選項(xiàng),當(dāng)x∈(0,1)時(shí),lnx<0,此時(shí)
以D錯(cuò)誤
Inc+I
9
。<0,故A不正確。
故選:BC
對(duì)于B選項(xiàng),y=6sin+2sina≥2w9=6,當(dāng)
例3.【答案】BC
【解析】對(duì)于A,因?yàn)?=a2+b2=a2+lb2≥2abl,
且僅當(dāng)6sna=2水z即5n4=號(hào)時(shí)取=”,
所以|ab|≤2,當(dāng)且僅當(dāng)a=b=√2時(shí)取等,故
A錯(cuò)誤;
故B正確。
對(duì)于C選項(xiàng),y=3+32-≥2W3=6,當(dāng)且僅當(dāng)3
對(duì)于B,因?yàn)?a+l≤22,即la+bl≤2,
√2
=32,即c=1時(shí)取“=”,故C正確,
可看作部分圓x2+2=4(xy≠0)上的點(diǎn)(a,b)到直
對(duì)于D選項(xiàng),y=+6+9=V+16+
線x+y=0的距離不大于2,
W2+16
因?yàn)閳A心(0,0)在直線x+y=0上,半徑為2,故
9≥2W9=6,
√x2+16
la+1≤2恒成立,故B正確;
當(dāng)且僅當(dāng)V+16=9云,即2=-7無解,故
√2
√x2+16
對(duì)于C,因?yàn)閍b|≤2,所以log2la+log2lb=log2
D不正確.
|abl≤1og22=1,故C正確;
故選:BC.
對(duì)于D,因?yàn)閍2+b2=4,a∈R,b∈R,且ab≠0,令
例2.【答案】BC
a=b=反,此時(shí)☆+內(nèi)=>1,
【解析】方法1:(x+y)2-3y=1,(x+y)2-1=
故D錯(cuò)誤.
3y≤3(巴),解得-2≤+y<2,
故選:BC
另一方面,2+-1=y≤女,解得2+≤
例4.【答案】ABD
2
【解析】對(duì)于A,a2+b2=a2+(1-a)2=2a2-2a+1
2.
1-y=+≥2,解得-3≤y≤1,所以
=2@-2+2≥
+=1+∈[導(dǎo)2]故選:BC,
當(dāng)且僅當(dāng)a=b=號(hào)時(shí),等號(hào)成立,故A正確,
對(duì)于B,a-b=2a-1>-1,所以2-t>21=
方法2:因?yàn)閎≤(告≤(a,be風(fēng),由
21
故B正確;
x2+y2-y=1可變形為,(c+y)2-1=3y≤
3(色告,解得-2≤+y≤2,當(dāng)且僅當(dāng)=y
對(duì)于C,1oga+logb=l1ogab≤1og,(2)°-
10ge4=-2,
-1時(shí),c+y=-2,當(dāng)且僅當(dāng)x=y=1時(shí),x十y=
2,所以A錯(cuò)誤,B正確:
當(dāng)且僅當(dāng)a=b=號(hào)時(shí),等號(hào)成立,故C不正確:
由x2+y2-y=1可變形為(2+y)-1=cy≤
對(duì)于D,因?yàn)?Wa+√D2=1+2Wab≤1+a+b=
0,解得2+2≤2,當(dāng)且僅當(dāng)x=y=士1時(shí)取
2,
2
等號(hào),所以C正確:因?yàn)閤2+-y=1變形可得
所以Va+6≤V2,當(dāng)且僅當(dāng)a=b=號(hào)時(shí),等號(hào)
(e-》+子=1,設(shè)-號(hào)=os9,9y
成立,故D正確;故選:ABD
例5.【答案】ACD
sin9,所以x=cos0+1
n,y=goin6,因此設(shè)g回=22,(ee0,+o)則se=
例22.【答案】A
(21ng)'-(2Ina)-2-2In
【詳解】由ae2-ln(x+1)+lna≥l得eztlna.+x+
x"
lna≥eta+ln(c+1),
當(dāng)0<0,函數(shù)g(x)在(0,e)上單
令F()=e+x,因?yàn)閥=e,y=x都是單調(diào)遞增
調(diào)遞增
函數(shù),
當(dāng)x>e時(shí),g(x)<0,函數(shù)g(x)在(0,e)上單調(diào)
所以F(x)=e+x為單調(diào)遞增函數(shù),
遞減
所以x+lna≥ln(x+1),
則g()在(0,+∞)上有且只有一個(gè)極值點(diǎn)x=e,
即對(duì)任意x∈(-l,+o)時(shí)lna≥ln(x+1)-x恒
該極值點(diǎn)就是g(x)的最大值點(diǎn).
成立,
所以g@)a=9eO)=名,即a≥名,則實(shí)數(shù)a的最
令h(=In(e+1)-z(c>-1),()=Ef
小值為名,故選:D
當(dāng)-10,h(x)單調(diào)遞增,
當(dāng)x>0時(shí),(x)>0,h(x)單調(diào)遞減,
例20.【答案】B
所以h(x)≥h(0)=lnl=0,
【詳解】不等式xa+'e+alnx≥0可化為ce≥xa
所以lna≥0,即a≥1.
lnxa,即e"lne"≥x-alnx,
故選:A.
a<0,x>2,則x>1,e2>1,
設(shè)f(x)=xlnc,則f(x)=lnc+1,x>1時(shí),f'(x)
例23.【答案】ABD
>0,f(x)是增函數(shù),
所以由e"lne*≥xlnx-a得e≥xa,x≥-alnx,
【詳解】fa)=芒→f(回)=o1習(xí)
一a≤1n
當(dāng)a>0時(shí),當(dāng)x>1時(shí),f'(x)<0,f(x)單調(diào)遞減,
所以>2時(shí),-a≤品恒成立.
當(dāng)x<1時(shí),f(x)>0,f(x)單調(diào)遞增,所以當(dāng)x=
設(shè)g=2則g)=h
1時(shí),函數(shù)f(c)有最大值,即f(e)=f(1)=8;
In'z
當(dāng)a<0時(shí),當(dāng)x>1時(shí),f(x)>0,f(x)單調(diào)遞增,
2e時(shí),g(x)
當(dāng)x<1時(shí),f(x)<0,f(x)單調(diào)遞減,所以當(dāng)x=
>0,g(x)遞增,
1時(shí),函數(shù)f(x)有最小值,沒有最大值,不符合題
所以g(x)min=g(e)=e,
意,
所以-a≤e,a≥-e.所以a的最小值是-e.
故選:B.
由g=ga=1a,
ax2
當(dāng)a>0時(shí),當(dāng)x>e時(shí),g(x)<0,g(c)單調(diào)遞減,
例21.【答案】A
當(dāng)00,g(c)單調(diào)遞增,所以當(dāng)
【詳解】由題意可得:g>ln(r+1)+lna+1,
a
x=e時(shí),函數(shù)g(x)有最大值,即g(x)mx=g(e)=
..e"-ina+x-Ina>ln(c+1)++1,
1
.e*-Ina+-lna>l(+In(+1),
當(dāng)a<0時(shí),當(dāng)x>e時(shí),g()>0,g(x)單調(diào)遞增,
令g()=e+x,易得g()在(1,十o)上單調(diào)遞增,
當(dāng)0.x-lna>In(a+1),ih(x)=x-Ina-In(x+
x=e時(shí),函數(shù)g()有最小值,沒有最大值,不符合
1,則(a=1-十=2年
題意,
故當(dāng)x∈(-1,0)時(shí),h'(c)<0,此時(shí)h(c)單調(diào)遞
于是有8=→a=±1,:a>0,.a=1,b=1
e ae
減,當(dāng)∈(1,+o)時(shí),h'(x)>0,此時(shí)h(x)單調(diào)遞
因此選項(xiàng)AB正確,
增,故h(c)n=h(0)=-lna,故只需-lna>0→0
兩個(gè)函數(shù)圖象如下圖所示:
故實(shí)數(shù)a的取值范圍為(0,1)·
故選:A
45

展開更多......

收起↑

資源列表

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 广昌县| 共和县| 浙江省| 炎陵县| 揭西县| 长白| 友谊县| 治县。| 梁山县| 綦江县| 商城县| 连城县| 漯河市| 前郭尔| 兴国县| 土默特左旗| 宁强县| 济南市| 凤山县| 西乌| 武乡县| 明水县| 福州市| 利川市| 那坡县| 喀什市| 金昌市| 岑溪市| 于都县| 隆子县| 绿春县| 九龙坡区| 田林县| 巴林右旗| 射洪县| 屏边| 临朐县| 河池市| 灵宝市| 玉环县| 化德县|