資源簡介 世界第4課時 整式的除法課題 第4課時 整式的除法 授課人教 學 目 標 1.經(jīng)歷探索同底數(shù)冪除法的運算性質(zhì)的過程,進一步體會冪的意義.理解零指數(shù)冪. 2.使學生掌握單項式除以單項式和多項式除以單項式的方法. 3.在進一步體會冪的意義的過程中,發(fā)展學生的推理能力和有條理的表達能力. 4.探索多項式除以單項式的方法,培養(yǎng)學生的創(chuàng)新精神. 5.運用單項式除以單項式、多項式除以單項式的方法進行計算,積累研究數(shù)學問題的經(jīng)驗. 6.從探索運算法則的過程中獲得成功的體驗,培養(yǎng)學生的創(chuàng)新精神和能力.教學 重點 單項式除以單項式、多項式除以單項式方法的總結(jié)以及運用方法進行計算.教學 難點 多項式除以單項式方法的探求以及運用方法進行計算.授課 類型 新授課 課時教學活動教學 步驟 師生活動 設(shè)計意圖回顧 復習提問: 1.敘述并寫出冪的運算性質(zhì)及怎樣用公式表示. 2.敘述單項式乘單項式的法則. 3.敘述單項式乘多項式的法則. 4.敘述多項式乘多項式的法則. 5.練習: 計算:(1)(-a)3(-a)2;(2)(ab)5·a3;(3)(x-3y)(x-y). 學生回憶并回答,以達到溫故知新的目的.活動 一: 創(chuàng)設(shè) 情境 導入 新課 【課堂引入】 人們以分貝為單位來表示聲音的強弱.通常說話的聲音是50分貝,它表示聲音的強度是105;摩托車發(fā)出的聲音是110分貝,它表示聲音的強度是1011,摩托車發(fā)出的聲音強度是說話聲音強度的多少倍 根據(jù)題意,請同學們列出算式,可得1011÷105,它是兩個同底數(shù)冪相除,那么如何進行計算呢 激發(fā)學生強烈的好奇心和求知欲,使學生經(jīng)歷將實際問題轉(zhuǎn)化為數(shù)學問題的建模過程.【探究1】 計算: (1)a9÷a3;(2)212÷27;(3)(-x)4÷(-x). 學生活動:學生獨立思考,利用除法的意義填空,根據(jù)自己所填結(jié)果,探索、歸納同底數(shù)冪的除法法則. 教師活動:教師引導學生自主探索,發(fā)現(xiàn)規(guī)律,歸納同底數(shù)冪的除法法則. am÷an=am-n(a≠0,m,n都是正整數(shù),并且m>n). 即同底數(shù)冪相除,底數(shù)不變,指數(shù)相減. 根據(jù)除法的意義填空,你有什么發(fā)現(xiàn) 活動 二: 探究 與 應(yīng)用 (1)55÷52= ; (2)107÷107= ; (3)a6÷a6= (a≠0). 師生活動:學生獨立完成填空,根據(jù)所填結(jié)果,教師引導學生根據(jù)冪的除法法則得出結(jié)論: a0=1(a≠0). 即任何不等于0的數(shù)的0次冪都等于1. 在這個過程中要學生理解a不能等于0的原因. 【探究2】 一、概括探究兩個單項式相除的方法. 單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式. 二、探索多項式除以單項式的一般規(guī)律 討論: 有了單項式除以單項式的經(jīng)驗,你會做多項式除以單項式的運算嗎 (1)計算:(ma+mb+mc)÷m; (2)從上面的計算中,你能發(fā)現(xiàn)什么規(guī)律 與同伴交流一下. 概括:多項式除以單項式運算的實質(zhì)是把多項式除以單項式的運算轉(zhuǎn)化為單項式的除法. 1.教師引導學生歸納出同底數(shù)冪的除法、單項式相除以及多項式除以單項式的方法. 2.教學中注意學生自己歸納概括,使之印象深刻.【應(yīng)用舉例】 例1 計算: (1)x8÷x2;(2)(ab)5÷(ab)2. 例2 計算: (1)28x4y2÷7x3y;(2)-5a5b3c÷15a4b;(3)(12a3-6a2+3a)÷3a. 師生活動:教師提示,學生解答. 例題教學使學生對整式除法的運算更加熟練.【拓展提升】 1.寫出下列冪的運算公式的逆向形式,完成后面的題目. am+n= ;am-n= ; amn= ;anbn= ; 例3 (1)已知xa=32,xb=4,求xa-b; (2)已知xm=5,xn=3,求x2m-3n; (3)若32·92a+1÷27a+1=81,求a的值. 歸納總結(jié): 同底數(shù)冪的除法法則的逆向形式:am-n=am÷an(a≠0,m,n都是正整數(shù),并且m>n). 底數(shù)a可以是一個具體的數(shù),也可以是單項式或多項式. 2.討論探索:已知一個多項式與單項式-7x5y4的積為21x5y7-28x7y4+7y,求這個多項式. 1.知識的綜合與拓展提高應(yīng)考能力. 2.對于三個或三個以上的同底數(shù)冪相除,仍然適用運算性質(zhì):am÷an÷ap=am-n-p(a≠0,m,n,p都是正整數(shù),并且m>n+p). 3.利用單項式除法法則計算時,要弄清兩個單項式的系數(shù)各是什么,哪些是同底數(shù)冪,哪些是只在被除式里出現(xiàn)的字母,此外,還要特別注意系數(shù)的符號.歸納總結(jié): 1.要熟練地進行多項式除以單項式的運算,必須掌握它的基礎(chǔ)運算,冪的運算性質(zhì)是整式乘除法的基礎(chǔ),只有抓住問題的關(guān)鍵,才能準確地進行多項式除以單項式的運算. 2.符號仍是運算中的重要問題,用多項式的每一項除以單項式時,要注意每一項的符號和單項式的符號. 3.可以利用乘除是互逆運算驗證計算是否正確,每一步運算都盡量說出依據(jù).活動 三: 課堂 總結(jié) 反思 【達標測評】 1.計算x6÷x2正確的是 ( ) A.3 B.x3 C.x4 D.x8 2.計算106×(102)3÷104的結(jié)果是 ( ) A.103 B.107 C.108 D.109 3.計算:(a2b)2÷a= . 4.已知am=3,an=2,則a2m-n的值為 . 5.計算:[(2a2bc)3-6a3b-(-4ab2)2]÷2a2b. 當堂檢測,及時反饋學習效果.【課堂總結(jié)】 1.同底數(shù)冪的除法法則,零指數(shù)冪的意義. 2.單項式除以單項式,有什么方法 3.多項式除以單項式有什么規(guī)律 4.單項式除以單項式的運算,要注意: (1)系數(shù)相除與同底數(shù)冪相除的區(qū)別:后者運算時是將指數(shù)相減,然而前者是有理數(shù)的除法. (2)對于單項式除以單項式,僅僅考慮整除的情況. 5.多項式除以單項式運算中應(yīng)注意的問題:一是所除的商要寫成省略括號的代數(shù)和的形式,二是除式與被除式不能交換,還要注意運算順序. 課堂總結(jié),發(fā)展?jié)撃?【知識網(wǎng)絡(luò)】 提綱挈領(lǐng),重點突出.【作業(yè)布置】 教材P105習題14.1第6,12題. 根據(jù)內(nèi)容,重點設(shè)置作業(yè),鞏固課堂教學效果.【教學反思】 ①[授課流程反思] 從實際問題導入,讓學生感受數(shù)學與生活的密切聯(lián)系,并由此建立數(shù)學模型.對新知識的研究過程,逐層遞進,環(huán)環(huán)相扣,體現(xiàn)了知識的產(chǎn)生、延伸與拓展.配以適量適度的習題訓練,強化對知識的理解與吸收. ②[講授效果反思] 通過對新知識的探索與應(yīng)用練習,鍛煉了學生思維的連貫性和發(fā)散性.在解題過程中,比較冪的各種運算性質(zhì),體會它們之間的聯(lián)系與區(qū)別,同時對于指數(shù)、“-”號、分數(shù)等容易出錯的地方倍加小心,有效鍛煉和提高了學生的運算能力. ③[師生互動反思] 在已經(jīng)學習了冪的乘法運算性質(zhì)以及整式乘法運算法則的基礎(chǔ)上,教師大膽放手,引導學生探索同底數(shù)冪的除法、單項式相除、多項式除以單項式等運算性質(zhì),鼓勵學生自主探究,遇到困難進行合作攻關(guān),共同提升.教師組織學生展示交流,并在關(guān)鍵處進行點撥. ④[習題反思] 好題題號 錯題題號 反思,更進一步提升. 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫