中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

人教版2019高中物理選擇性必修一2.2 簡諧運動的描述(共20張PPT)

資源下載
  1. 二一教育資源

人教版2019高中物理選擇性必修一2.2 簡諧運動的描述(共20張PPT)

資源簡介

(共20張PPT)
2.2 簡諧運動的描述
人教版(2019)普通高中物理選擇性必修第一冊
第二章 機械振動
問題
有些物體的振動可以近似為簡諧運動,做簡諧運動的物體在一個位置附近不斷地重復同樣的運動。如何描述簡諧運動的這種獨特性呢?
簡諧運動:如果質點的位移與時間的關系遵從正弦函數的規律,即它的振動圖象(x—t圖象)是一條正弦曲線,這樣的振動叫做簡諧運動。
做簡諧運動的物體的位移x與運動時間t之間滿足正弦函數關系,因此,位移x的一般函數表達式可寫為:
學習任務一:振幅
1.振幅(A)
(1)定義:振動物體離開平衡位置的最大距離。
振幅的2倍表示振動物體運動范圍的大小。
(2)物理意義:振幅是描述振動強弱的物理量。
(3)單位:米(m)
(4)振幅和位移的區別:
①振幅等于最大位移的數值。
②對于一個給定的振動,振子的位移是時刻變化的,但振幅是不變的。
③位移是矢量,振幅是標量。
振幅與位移、路程的比較
比較項 振幅 位移 路程
概念 振動物體離開平衡位置的最大距離 從平衡位置指向振動物體所在位置的有向線段 運動軌跡的長度
標矢性 標量 矢量 標量
變化 在穩定的振動系統中不發生變化 大小和方向隨時間做周期性變化 隨時間增加
聯系 ①振幅等于最大位移的大小; ②振動物體在一個周期內的路程等于4個振幅,而振動物體在一個周期內的位移等于0
學習任務二:周期和頻率
振動物體從某一初始狀態開始,再次回到初始狀態(即位移、速度均與初態完全相同)所經歷的過程。
1.全振動
若從振子向右經過某點p起,經過怎樣的運動才叫完成一次全振動?
問題
O
A
P
V
平衡位置
A′
P
A′
O
A
O
P
學習任務二:周期和頻率
2.周期
做簡諧運動的物體完成一次全振動所需要的時間,用T表示,單位:s.
3.頻率
單位時間內完成全振動的次數,用f表示,單位:Hz.
周期T與頻率f的關系是T=
學習任務二:周期和頻率
做一做
測量小球振動的周期
如圖彈簧上端固定,下端懸掛鋼球。把鋼球從平衡位置向下拉一段距離 A,放手讓其運動,A 就是振動的振幅。用停表測出鋼球完成 n 個全振動所用的時間 t, 就是振動的周期。n 的值取大一些可以減小測量誤差。再把振幅減小為原來的一半,用同樣的方法測量振動的周期。
學習任務二:周期和頻率
學習任務二:周期和頻率
實驗結果
(3)振動周期與振子的質量有關,質量較小時,周期較小。
(2)振動周期與彈簧的勁度系數有關,勁度系數較大時,周期較小。
(1)振動周期與振幅大小無關。
結論:彈簧振子的周期由振動系統本身的質量和勁度系數決定,而與振幅無關,所以常把周期和頻率叫做固有周期和固有頻率。
學習任務二:周期和頻率
可見,ω是一個與周期成反比、與頻率成正比的量,叫作簡諧運動的“圓頻率”。它也表示簡諧運動的快慢。
于是
根據周期與頻率間的關系,則
由此解出
簡諧運動的周期性
(1)若t2-t1=nT(n=1,2,3…),則t1、t2兩時刻振動物體在同一位置,運動情況相同。
(2)若t2-t1=nT+T/2(n=0,1,2…),則t1、t2兩時刻描述運動的物理量(x、f、a、v)均大小相等,方向相反。
(3)若t2-t1=nT+T/4(n=0,1,2…)或t2-t1=nT+3T/4
(n=0,1,2…),則當t1時刻物體到達最大位移處時,t2時刻物體到達平衡位置;當t1時刻物體在平衡位置時,t2時刻到達最大位移處;若t1 時刻物體在其他位置,t2時刻物體到達何處就要視具體情況而定。
學習任務三:相位
從x=Asin(ωt+φ)可以發現:
當(ωt+φ)確定時,sin(ωt+φ)的值也就確定了,所以(ωt+φ)代表了做簡諧運動的物體此時正處于一個運動周期中的哪個狀態。
“ t+ ” 叫簡諧運動的相位。
物理意義:表示簡諧運動所處的狀態.
叫初相,即t=0時的相位.
學習任務三:相位
相位差:兩個相同頻率的簡諧運動的相位差,簡稱相差。
關于相位差Δφ=φ2-φ1的說明:
(2) >0,表示振動2比振動1超前.
<0,表示振動2比振動1滯后.
①同相:相位差為零,一般地為 =2n (n=0,1,2,……)
②反相:相位差為 ,一般地為 =(2n+1) (n=0,1,2,……)
下圖為甲、乙(實線為甲,虛線為乙)兩個彈簧振子的振動圖像。
思考1:這兩個彈簧振子的振幅是多少?周期是多少?頻率是多少?請寫出它們的位移隨時間變化的關系式。
思考2:兩個振動的相位、初相和相位差各是多少
甲的相位:πt
乙的相位:πt+π/6
相位差:π/6
甲的初相位:0
乙的初相位:π/6

學習任務三:相位
振幅
角速度
(圓頻率)
相位
初相位
(平衡位置處開始計時)
(最大位移處開始計時)
描述簡諧運動的物理量
簡諧運動的表達式
周期(T)
振幅(A)
頻率(f)
相位、相位差
考點一:描述簡諧運動的物理量之間的關系
C
考點二:簡諧運動表達式的理解和應用
C
考點二:簡諧運動表達式的理解和應用
CD

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 武乡县| 确山县| 启东市| 聂荣县| 丰县| 雷波县| 新民市| 九龙坡区| 二连浩特市| 洛隆县| 眉山市| 重庆市| 龙游县| 菏泽市| 义乌市| 锡林浩特市| 常州市| 宜宾县| 阜宁县| 长顺县| 平和县| 布拖县| 潼关县| 霍州市| 韶山市| 喜德县| 务川| 枝江市| 工布江达县| 新巴尔虎左旗| 乌鲁木齐县| 乌拉特中旗| 老河口市| 平江县| 汕头市| 浙江省| 乐至县| 宝坻区| 黎川县| 沈丘县| 志丹县|