資源簡(jiǎn)介 (共74張PPT)習(xí)題課第二章<<<對(duì)稱問(wèn)題1.學(xué)會(huì)解決點(diǎn)點(diǎn)、點(diǎn)線、線線對(duì)稱問(wèn)題(重點(diǎn)).2.會(huì)應(yīng)用對(duì)稱問(wèn)題解決最值問(wèn)題和反射問(wèn)題(難點(diǎn)).學(xué)習(xí)目標(biāo)1.點(diǎn)關(guān)于點(diǎn)對(duì)稱點(diǎn)關(guān)于點(diǎn)對(duì)稱的本質(zhì)是中點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)P(x1,y1)關(guān)于點(diǎn)Q(x0,y0)的對(duì)稱點(diǎn)為P′(x2,y2),則根據(jù)中點(diǎn)坐標(biāo)公式,有 可得對(duì)稱點(diǎn)P′(x2,y2)的坐標(biāo)為(2x0-x1,2y0-y1).2.點(diǎn)關(guān)于直線對(duì)稱點(diǎn)P(x1,y1)關(guān)于直線l:Ax+By+C=0對(duì)稱的點(diǎn)為P′(x2,y2),連接PP′,交l于M點(diǎn),則l垂直平分PP′,所以PP′⊥l,且M為PP′的中點(diǎn),又因為M在直線l上,故可得 解出(x2,y2)即可.3.直線關(guān)于點(diǎn)對(duì)稱方法一:在已知直線上任取兩點(diǎn),求出這兩點(diǎn)關(guān)于已知點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo),再由兩點(diǎn)式求出直線方程;方法二:在已知直線上任取一點(diǎn),求出該點(diǎn)關(guān)于已知點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo),再利用兩直線平行,由點(diǎn)斜式求出直線方程.4.直線關(guān)于直線對(duì)稱求直線l1:ax+by+c=0關(guān)于直線l2:dx+ey+f=0(兩直線不平行)的對(duì)稱直線l3.第一步:聯(lián)立l1,l2的方程,算出交點(diǎn)P(x0,y0);第二步:在l1上任找一點(diǎn)(非交點(diǎn))Q(x1,y1),利用點(diǎn)關(guān)于直線l2對(duì)稱算出對(duì)稱點(diǎn)Q′(x2,y2);第三步:利用兩點(diǎn)式寫出l3的方程.5.常見(jiàn)的一些特殊的對(duì)稱點(diǎn)(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為(x,-y),關(guān)于y軸的對(duì)稱點(diǎn)為(-x,y).點(diǎn)(x,y)關(guān)于直線y=x的對(duì)稱點(diǎn)為(y,x),關(guān)于直線y=-x的對(duì)稱點(diǎn)為(-y,-x).點(diǎn)(x,y)關(guān)于直線x=a的對(duì)稱點(diǎn)為(2a-x,y),關(guān)于直線y=b的對(duì)稱點(diǎn)為(x,2b-y).點(diǎn)(x,y)關(guān)于點(diǎn)(a,b)的對(duì)稱點(diǎn)為(2a-x,2b-y).點(diǎn)(x,y)關(guān)于直線x+y=k的對(duì)稱點(diǎn)為(k-y,k-x),關(guān)于直線x-y=k的對(duì)稱點(diǎn)為(k+y,x-k).一、幾類常見(jiàn)的對(duì)稱問(wèn)題二、光的反射問(wèn)題課時(shí)對(duì)點(diǎn)練三、利用對(duì)稱解決有關(guān)最值問(wèn)題隨堂演練內(nèi)容索引幾類常見(jiàn)的對(duì)稱問(wèn)題一已知直線l:y=3x+3,求:(1)點(diǎn)P(4,5)關(guān)于l的對(duì)稱點(diǎn)的坐標(biāo);例 1設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為P′(x′,y′),則線段PP′的中點(diǎn)在直線l上,且直線PP′垂直于直線l,所以點(diǎn)P′的坐標(biāo)為(-2,7).設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為P′(x′,y′),則線段PP′的中點(diǎn)在直線l上,且直線PP′垂直于直線l,所以點(diǎn)P′的坐標(biāo)為(-2,7).(2)直線y=x-2關(guān)于l的對(duì)稱直線的方程;在直線y=x-2上任取一點(diǎn)M(2,0),設(shè)點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)為M′(x0,y0),化簡(jiǎn)得7x+y+22=0,即為所求直線的方程.(3)直線l關(guān)于點(diǎn)A(3,2)的對(duì)稱直線的方程.在直線l上取兩點(diǎn)E(0,3),F(xiàn)(-1,0),則E,F(xiàn)關(guān)于點(diǎn)A(3,2)的對(duì)稱點(diǎn)分別為E′(6,1),F(xiàn)′(7,4).因?yàn)辄c(diǎn)E′,F(xiàn)′在所求直線上,即3x-y-17=0.(1)點(diǎn)關(guān)于點(diǎn)的對(duì)稱問(wèn)題通常利用中點(diǎn)坐標(biāo)公式.點(diǎn)P(x,y)關(guān)于Q(a,b)的對(duì)稱點(diǎn)為P′(2a-x,2b-y).(2)直線關(guān)于點(diǎn)的對(duì)稱直線通常用轉(zhuǎn)移法或取特殊點(diǎn)來(lái)求.設(shè)l的方程為Ax+By+C=0(A2+B2≠0)和點(diǎn)P(x0,y0),則l關(guān)于P點(diǎn)的對(duì)稱直線方程為A(2x0-x)+B(2y0-y)+C=0.對(duì)稱問(wèn)題的解決方法反思感悟(3)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),要抓住“垂直”和“平分”.設(shè)P(x0,y0),l:Ax+By+C=0(A2+B2≠0),P關(guān)于l的對(duì)稱點(diǎn)Q可以通過(guò)條件:①PQ⊥l;②PQ的中點(diǎn)在l上來(lái)求得.(4)求直線關(guān)于直線的對(duì)稱直線的問(wèn)題可轉(zhuǎn)化為點(diǎn)關(guān)于直線的對(duì)稱問(wèn)題.反思感悟已知P(-1,2),M(1,3),直線l:y=2x+1.(1)求點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)R的坐標(biāo);跟蹤訓(xùn)練 1設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)R的坐標(biāo)為(x,y),(2)求直線PM關(guān)于直線l對(duì)稱的直線方程.因?yàn)镸(1,3)的坐標(biāo)滿足直線l的方程,則直線MR即為所求的直線,由兩點(diǎn)式得所求直線方程為11x+2y-17=0.二光的反射問(wèn)題一束光線從原點(diǎn)O(0,0)出發(fā),經(jīng)過(guò)直線l:8x+6y=25反射后通過(guò)點(diǎn)P(-4,3),求反射光線的方程及光線從O點(diǎn)到達(dá)P點(diǎn)所經(jīng)過(guò)的路程.例 2如圖,設(shè)原點(diǎn)關(guān)于l的對(duì)稱點(diǎn)A的坐標(biāo)為(a,b),由直線OA與l垂直和線段AO的中點(diǎn)在l上得所以A的坐標(biāo)為(4,3).因?yàn)榉瓷涔饩€的反向延長(zhǎng)線過(guò)A(4,3),又由反射光線過(guò)P(-4,3),A,P兩點(diǎn)縱坐標(biāo)相等,故反射光線所在直線的方程為y=3.由于反射光線為射線,由光的性質(zhì)可知,光線從O到P的路程即為AP的長(zhǎng)度|AP|,由A(4,3),P(-4,3)知,|AP|=4-(-4)=8,即光線從O點(diǎn)到達(dá)P點(diǎn)所經(jīng)過(guò)的路程為8.根據(jù)平面幾何知識(shí)和光學(xué)知識(shí),入射光線、反射光線上對(duì)應(yīng)的點(diǎn)是關(guān)于法線對(duì)稱的.利用點(diǎn)的對(duì)稱關(guān)系可以求解.反思感悟如圖所示,已知點(diǎn)A(4,0),B(0,4),從點(diǎn)P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射后又回到點(diǎn)P,則光線所經(jīng)過(guò)的路程是跟蹤訓(xùn)練 2√由題意知,AB所在直線的方程為x+y-4=0.如圖,點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)為D(4,2),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為C(-2,0),則光線所經(jīng)過(guò)的路程為|CD|=利用對(duì)稱解決有關(guān)最值問(wèn)題三在直線l:x-y-1=0上求兩點(diǎn)P,Q.使得:(1)P到A(4,1)與B(0,4)的距離之差最大;例 3∴a+b-4=0, ①即2x+y-9=0.易知||PB|-|PA||=||PB′|-|PA||,當(dāng)且僅當(dāng)P,B′,A三點(diǎn)共線時(shí),||PB′|-|PA||最大.(2)Q到A(4,1)與C(3,0)的距離之和最小.如圖,設(shè)點(diǎn)C關(guān)于l的對(duì)稱點(diǎn)為C′,可求得C′的坐標(biāo)為(1,2),∴AC′所在直線的方程為x+3y-7=0.易知|QA|+|QC|=|QA|+|QC′|,當(dāng)且僅當(dāng)Q,A,C′三點(diǎn)共線時(shí),|QA|+|QC′|最小.由平面幾何知識(shí)(三角形任意兩邊之和大于第三邊,任意兩邊之差的絕對(duì)值小于第三邊)可知,要解決在直線l上求一點(diǎn),使這點(diǎn)到兩定點(diǎn)A,B的距離之差最大的問(wèn)題,若這兩點(diǎn)A,B位于直線l的同側(cè),則只需求出直線AB的方程,再求它與已知直線的交點(diǎn),即得所求的點(diǎn)的坐標(biāo);若A,B兩點(diǎn)位于直線l的異側(cè),則先求A,B兩點(diǎn)中某一點(diǎn),如A關(guān)于直線l的對(duì)稱點(diǎn)A′,得直線A′B的方程,再求其與直線l的交點(diǎn)即可.對(duì)于在直線l上求一點(diǎn)P,使P到平面上兩點(diǎn)A,B的距離之和最小的問(wèn)題可用類似方法求解.利用對(duì)稱性求距離的最值問(wèn)題反思感悟已知兩點(diǎn)A(1,3),B(4,5),動(dòng)點(diǎn)M在直線y=x上運(yùn)動(dòng),則|MA|+|MB|的最小值為_(kāi)____.跟蹤訓(xùn)練 3根據(jù)題意畫出圖象,如圖,設(shè)點(diǎn)A關(guān)于直線y=x的對(duì)稱點(diǎn)為A′(x,y),1.知識(shí)清單:(1)關(guān)于點(diǎn)點(diǎn)、點(diǎn)線、線線的對(duì)稱問(wèn)題.(2)反射問(wèn)題.(3)利用對(duì)稱解決有關(guān)最值問(wèn)題.2.方法歸納:轉(zhuǎn)化化歸、數(shù)形結(jié)合.3.常見(jiàn)誤區(qū):兩條直線關(guān)于直線外一點(diǎn)對(duì)稱,則這兩條直線一定平行,千萬(wàn)不要與兩條相交直線關(guān)于角平分線所在直線對(duì)稱混淆.隨堂演練四12341.點(diǎn)(3,9)關(guān)于直線x+3y-10=0對(duì)稱的點(diǎn)的坐標(biāo)是A.(-1,-3) B.(17,-9)C.(-1,3) D.(-17,9)√設(shè)點(diǎn)(3,9)關(guān)于直線x+3y-10=0對(duì)稱的點(diǎn)的坐標(biāo)為(a,b),所以該點(diǎn)的坐標(biāo)為(-1,-3).12342.直線x-2y+1=0 關(guān)于直線x=1對(duì)稱的直線方程是A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=0√12343.若點(diǎn)P(3,4)和點(diǎn)Q(a,b)關(guān)于直線x-y-1=0對(duì)稱,則A.a=1,b=-2 B.a=2,b=-1C.a=4,b=3 D.a=5,b=2√12344.已知A(3,0),B(0,3),從點(diǎn)P(0,2)射出的光線經(jīng)x軸反射到直線AB上,又經(jīng)過(guò)直線AB反射回到P點(diǎn),則光線所經(jīng)過(guò)的路程為√1234由題意知直線AB的方程為x+y=3,點(diǎn)P(0,2)關(guān)于x軸的對(duì)稱點(diǎn)為P1(0,-2),設(shè)點(diǎn)P(0,2)關(guān)于直線AB的對(duì)稱點(diǎn)為P2(a,b),如圖,課時(shí)對(duì)點(diǎn)練五12345678910111213141516基礎(chǔ)鞏固1.已知點(diǎn)A(x,5)關(guān)于點(diǎn)(1,y)的對(duì)稱點(diǎn)為(-2,-3),則點(diǎn)P(x,y)到原點(diǎn)的距離是√12345678910111213141516123456789101112131415162.點(diǎn)P(a,b)關(guān)于直線l:x+y+1=0對(duì)稱的點(diǎn)仍在l上,則a+b等于A.-1 B.1C.2 D.0√∵點(diǎn)P(a,b)關(guān)于直線l:x+y+1=0對(duì)稱的點(diǎn)仍在l上,∴點(diǎn)P(a,b)在直線l上,∴a+b+1=0,即a+b=-1.123456789101112131415163.點(diǎn)P(2,5)關(guān)于直線l:x+y+1=0的對(duì)稱點(diǎn)的坐標(biāo)為A.(6,-3) B.(3,-6)C.(-6,-3) D.(-6,3)√設(shè)點(diǎn)P(2,5)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為(x,y),故點(diǎn)P(2,5)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為(-6,-3).123456789101112131415164.已知直線l:ax+by+c=0與直線l′關(guān)于直線x+y=0對(duì)稱,則l′的方程為A.bx+ay-c=0 B.bx-ay+c=0C.bx+ay+c=0 D.bx-ay-c=0√在l的方程中以-x代替y,以-y代替x,即得l′的方程,則l′:a(-y)+b(-x)+c=0,即bx+ay-c=0.123456789101112131415165.直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線方程是A.2x+3y+7=0 B.3x-2y+2=0C.2x+3y+8=0 D.3x-2y-12=0√12345678910111213141516∵直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線斜率不變,∴設(shè)對(duì)稱后的直線方程l′為2x+3y+c=0,又點(diǎn)(1,-1)到兩直線的距離相等,化簡(jiǎn)得|c-1|=7,解得c=-6 或c=8,∴l(xiāng)′的方程為2x+3y-6=0(舍)或 2x+3y+8=0,即直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線方程是2x+3y+8=0.123456789101112131415166.光線從點(diǎn)A(-3,5)射到x軸上,經(jīng)x軸反射后經(jīng)過(guò)點(diǎn)B(2,10),則光線從A到B的路程為點(diǎn)A(-3,5)關(guān)于x軸的對(duì)稱點(diǎn)A′(-3,-5),則光線從A到B的路程即|A′B|的長(zhǎng),√123456789101112131415167.如圖,光線從P(a,0)(a>0)出發(fā),經(jīng)過(guò)直線l:x-2y=0反射到Q(b,0),該光線又在Q點(diǎn)被x軸反射,若反射光線恰與直線l平行,且b≥22,則實(shí)數(shù)a的最小值是______.1012345678910111213141516設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為P′(x0,y0),因?yàn)樵赒點(diǎn)被x軸反射后的反射光線恰與直線l平行,12345678910111213141516即實(shí)數(shù)a的最小值是10.123456789101112131415168.臺(tái)球運(yùn)動(dòng)中反彈球技法是常見(jiàn)的技巧,其中無(wú)旋轉(zhuǎn)反彈球是最簡(jiǎn)單的技法,主球撞擊目標(biāo)球后,目標(biāo)球撞擊臺(tái)邊之后按照光線反射的方向彈出,想要讓目標(biāo)球沿著理想的方向反彈,就要事先根據(jù)需要確認(rèn)臺(tái)邊的撞擊點(diǎn),同時(shí)做到用力適當(dāng),方向精確,這樣才能通過(guò)反彈來(lái)將目標(biāo)球成功擊入袋中.如圖,現(xiàn)有一目標(biāo)球從點(diǎn)A(-2,3)無(wú)旋轉(zhuǎn)射入,經(jīng)過(guò)x軸(桌邊)上的點(diǎn)P反彈后,經(jīng)過(guò)點(diǎn)B(5,7),則點(diǎn)P的坐標(biāo)為_(kāi)_______.12345678910111213141516設(shè)P(x,0),A點(diǎn)關(guān)于x軸對(duì)稱的點(diǎn)為A′(-2,-3),由題意知A′,B,P三點(diǎn)共線,123456789101112131415169.已知點(diǎn)M(3,5),在直線l:x-2y+2=0和y軸上各找一點(diǎn)P和Q,使△MPQ的周長(zhǎng)最小.12345678910111213141516由點(diǎn)M(3,5)及直線l,可求得點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)為M1(5,1).同樣可求得點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為M2(-3,5).由M1及M2兩點(diǎn)可得到直線M1M2的方程為x+2y-7=0.1234567891011121314151610.已知直線l:x-y+3=0,一束光線從點(diǎn)A(1,2)處射向x軸上一點(diǎn)B,又從點(diǎn)B反射到l上的一點(diǎn)C,最后從點(diǎn)C反射回點(diǎn)A.(1)試判斷由此得到的△ABC的個(gè)數(shù);12345678910111213141516如圖,設(shè)B(m,0),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′(1,-2),點(diǎn)B關(guān)于直線x-y+3=0的對(duì)稱點(diǎn)為B′(-3,m+3).12345678910111213141516當(dāng)m=-3時(shí),點(diǎn)B在直線x-y+3=0上,不能構(gòu)成三角形.綜上,符合題意的△ABC只有1個(gè).12345678910111213141516(2)求直線BC的方程.則直線A′B的方程為3x+y-1=0,即直線BC的方程為3x+y-1=0.12345678910111213141516綜合運(yùn)用11.已知點(diǎn)(1,-1)關(guān)于直線l1:y=x的對(duì)稱點(diǎn)為A,設(shè)直線l2經(jīng)過(guò)點(diǎn)A,則當(dāng)點(diǎn)B(2,-1)到直線l2的距離最大時(shí),直線l2的方程為A.2x+3y+5=0 B.3x-2y+5=0C.3x+2y+5=0 D.2x-3y+5=0√12345678910111213141516設(shè)點(diǎn)B(2,-1)到直線l2的距離為d,當(dāng)d=|AB|時(shí)取得最大值,此時(shí)直線l2垂直于直線AB,1234567891011121314151612.若x,y滿足x+y+1=0,則x2+y2-2x-2y+2的最小值為√12345678910111213141516原多項(xiàng)式可化為(x-1)2+(y-1)2,其幾何意義為點(diǎn)P(x,y)和點(diǎn)Q(1,1)間距離的平方,且點(diǎn)P(x,y)在直線x+y+1=0上.設(shè)d為點(diǎn)Q到直線x+y+1=0的距離,12345678910111213141516√12345678910111213141516∴f(x)的幾何意義為點(diǎn)M(x,0)到兩定點(diǎn)A(-2,4)與B(-1,3)的距離之和,設(shè)點(diǎn)A(-2,4)關(guān)于x軸的對(duì)稱點(diǎn)為A′,則A′(-2,-4).要求f(x)的最小值,可轉(zhuǎn)化為求|MA|+|MB|的最小值,1234567891011121314151614.唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題——“將軍飲馬”問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊讓馬飲水后再回到軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在位置為B(-1,-4),若將軍從點(diǎn)A(-1,2)處出發(fā),河岸線所在直線方程為x+y=3.則“將軍飲馬”的最短總路程為√12345678910111213141516如圖所示,設(shè)點(diǎn)B關(guān)于直線x+y=3的對(duì)稱點(diǎn)為C(a,b),在直線x+y=3上取點(diǎn)P,由對(duì)稱性可得|PB|=|PC|,12345678910111213141516當(dāng)且僅當(dāng)A,P,C三點(diǎn)共線時(shí),等號(hào)成立,12345678910111213141516拓廣探究x-4y-1=012345678910111213141516又線段PQ的中點(diǎn)是(1,0),所以p,q為方程x2-2x-1=0的根,12345678910111213141516由兩點(diǎn)式得直線PQ的方程為x-4y-1=0.1234567891011121314151616.已知直線l:x-2y+8=0和兩點(diǎn)A(2,0),B(-2,-4).(1)在直線l上求一點(diǎn)P,使|PA|+|PB|最??;12345678910111213141516設(shè)A關(guān)于直線l的對(duì)稱點(diǎn)為A′(m,n),故A′(-2,8).因?yàn)镻為直線l上的一點(diǎn),則|PA|+|PB|=|PA′|+|PB|≥|A′B|,當(dāng)且僅當(dāng)B,P,A′三點(diǎn)共線時(shí),|PA|+|PB|取得最小值,為|A′B|,點(diǎn)P即是直線A′B與直線l的交點(diǎn),12345678910111213141516故所求的點(diǎn)P的坐標(biāo)為(-2,3).12345678910111213141516(2)在直線l上求一點(diǎn)P,使||PB|-|PA||最大.A,B兩點(diǎn)在直線l的同側(cè),P是直線l上的一點(diǎn),則||PB|-|PA||≤|AB|,當(dāng)且僅當(dāng)A,B,P三點(diǎn)共線時(shí),||PB|-|PA||取得最大值,為|AB|,點(diǎn)P即是直線AB與直線l的交點(diǎn),又直線AB的方程為y=x-2,故所求的點(diǎn)P的坐標(biāo)為(12,10).習(xí)題課 對(duì)稱問(wèn)題[學(xué)習(xí)目標(biāo)] 1.學(xué)會(huì)解決點(diǎn)點(diǎn)、點(diǎn)線、線線對(duì)稱問(wèn)題(重點(diǎn)).2.會(huì)應(yīng)用對(duì)稱問(wèn)題解決最值問(wèn)題和反射問(wèn)題(難點(diǎn)).1.點(diǎn)關(guān)于點(diǎn)對(duì)稱點(diǎn)關(guān)于點(diǎn)對(duì)稱的本質(zhì)是中點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)P(x1,y1)關(guān)于點(diǎn)Q(x0,y0)的對(duì)稱點(diǎn)為P′(x2,y2),則根據(jù)中點(diǎn)坐標(biāo)公式,有可得對(duì)稱點(diǎn)P′(x2,y2)的坐標(biāo)為(2x0-x1,2y0-y1).2.點(diǎn)關(guān)于直線對(duì)稱點(diǎn)P(x1,y1)關(guān)于直線l:Ax+By+C=0對(duì)稱的點(diǎn)為P′(x2,y2),連接PP′,交l于M點(diǎn),則l垂直平分PP′,所以PP′⊥l,且M為PP′的中點(diǎn),又因?yàn)镸在直線l上,故可得解出(x2,y2)即可.3.直線關(guān)于點(diǎn)對(duì)稱方法一:在已知直線上任取兩點(diǎn),求出這兩點(diǎn)關(guān)于已知點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo),再由兩點(diǎn)式求出直線方程;方法二:在已知直線上任取一點(diǎn),求出該點(diǎn)關(guān)于已知點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo),再利用兩直線平行,由點(diǎn)斜式求出直線方程.4.直線關(guān)于直線對(duì)稱求直線l1:ax+by+c=0關(guān)于直線l2:dx+ey+f=0(兩直線不平行)的對(duì)稱直線l3.第一步:聯(lián)立l1,l2的方程,算出交點(diǎn)P(x0,y0);第二步:在l1上任找一點(diǎn)(非交點(diǎn))Q(x1,y1),利用點(diǎn)關(guān)于直線l2對(duì)稱算出對(duì)稱點(diǎn)Q′(x2,y2);第三步:利用兩點(diǎn)式寫出l3的方程.5.常見(jiàn)的一些特殊的對(duì)稱點(diǎn)(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為(x,-y),關(guān)于y軸的對(duì)稱點(diǎn)為(-x,y).點(diǎn)(x,y)關(guān)于直線y=x的對(duì)稱點(diǎn)為(y,x),關(guān)于直線y=-x的對(duì)稱點(diǎn)為(-y,-x).點(diǎn)(x,y)關(guān)于直線x=a的對(duì)稱點(diǎn)為(2a-x,y),關(guān)于直線y=b的對(duì)稱點(diǎn)為(x,2b-y).點(diǎn)(x,y)關(guān)于點(diǎn)(a,b)的對(duì)稱點(diǎn)為(2a-x,2b-y).點(diǎn)(x,y)關(guān)于直線x+y=k的對(duì)稱點(diǎn)為(k-y,k-x),關(guān)于直線x-y=k的對(duì)稱點(diǎn)為(k+y,x-k).一、幾類常見(jiàn)的對(duì)稱問(wèn)題例1 已知直線l:y=3x+3,求:(1)點(diǎn)P(4,5)關(guān)于l的對(duì)稱點(diǎn)的坐標(biāo);(2)直線y=x-2關(guān)于l的對(duì)稱直線的方程;(3)直線l關(guān)于點(diǎn)A(3,2)的對(duì)稱直線的方程.解 (1)設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為P′(x′,y′),則線段PP′的中點(diǎn)在直線l上,且直線PP′垂直于直線l,即解得所以點(diǎn)P′的坐標(biāo)為(-2,7).(2)解方程組得則點(diǎn)在所求直線上.在直線y=x-2上任取一點(diǎn)M(2,0),設(shè)點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)為M′(x0,y0),則 解得點(diǎn)M′也在所求直線上.由兩點(diǎn)式得直線方程為=,化簡(jiǎn)得7x+y+22=0,即為所求直線的方程.(3)在直線l上取兩點(diǎn)E(0,3),F(xiàn)(-1,0),則E,F(xiàn)關(guān)于點(diǎn)A(3,2)的對(duì)稱點(diǎn)分別為E′(6,1),F(xiàn)′(7,4).因?yàn)辄c(diǎn)E′,F(xiàn)′在所求直線上,所以由兩點(diǎn)式得所求直線方程為=,即3x-y-17=0.反思感悟 對(duì)稱問(wèn)題的解決方法(1)點(diǎn)關(guān)于點(diǎn)的對(duì)稱問(wèn)題通常利用中點(diǎn)坐標(biāo)公式.點(diǎn)P(x,y)關(guān)于Q(a,b)的對(duì)稱點(diǎn)為P′(2a-x,2b-y).(2)直線關(guān)于點(diǎn)的對(duì)稱直線通常用轉(zhuǎn)移法或取特殊點(diǎn)來(lái)求.設(shè)l的方程為Ax+By+C=0(A2+B2≠0)和點(diǎn)P(x0,y0),則l關(guān)于P點(diǎn)的對(duì)稱直線方程為A(2x0-x)+B(2y0-y)+C=0.(3)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),要抓住“垂直”和“平分”.設(shè)P(x0,y0),l:Ax+By+C=0(A2+B2≠0),P關(guān)于l的對(duì)稱點(diǎn)Q可以通過(guò)條件:①PQ⊥l;②PQ的中點(diǎn)在l上來(lái)求得.(4)求直線關(guān)于直線的對(duì)稱直線的問(wèn)題可轉(zhuǎn)化為點(diǎn)關(guān)于直線的對(duì)稱問(wèn)題.跟蹤訓(xùn)練1 已知P(-1,2),M(1,3),直線l:y=2x+1.(1)求點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)R的坐標(biāo);(2)求直線PM關(guān)于直線l對(duì)稱的直線方程.解 (1)設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)R的坐標(biāo)為(x,y),則有解得 所以R的坐標(biāo)為 .(2)因?yàn)镸(1,3)的坐標(biāo)滿足直線l的方程,又點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為R,則直線MR即為所求的直線,由兩點(diǎn)式得所求直線方程為11x+2y-17=0.二、光的反射問(wèn)題例2 一束光線從原點(diǎn)O(0,0)出發(fā),經(jīng)過(guò)直線l:8x+6y=25反射后通過(guò)點(diǎn)P(-4,3),求反射光線的方程及光線從O點(diǎn)到達(dá)P點(diǎn)所經(jīng)過(guò)的路程.解 如圖,設(shè)原點(diǎn)關(guān)于l的對(duì)稱點(diǎn)A的坐標(biāo)為(a,b),由直線OA與l垂直和線段AO的中點(diǎn)在l上得解得所以A的坐標(biāo)為(4,3).因?yàn)榉瓷涔饩€的反向延長(zhǎng)線過(guò)A(4,3),又由反射光線過(guò)P(-4,3),A,P兩點(diǎn)縱坐標(biāo)相等,故反射光線所在直線的方程為y=3.聯(lián)立解得即交點(diǎn)Q,由于反射光線為射線,故反射光線的方程為y=3.由光的性質(zhì)可知,光線從O到P的路程即為AP的長(zhǎng)度|AP|,由A(4,3),P(-4,3)知,|AP|=4-(-4)=8,即光線從O點(diǎn)到達(dá)P點(diǎn)所經(jīng)過(guò)的路程為8.反思感悟 根據(jù)平面幾何知識(shí)和光學(xué)知識(shí),入射光線、反射光線上對(duì)應(yīng)的點(diǎn)是關(guān)于法線對(duì)稱的.利用點(diǎn)的對(duì)稱關(guān)系可以求解.跟蹤訓(xùn)練2 如圖所示,已知點(diǎn)A(4,0),B(0,4),從點(diǎn)P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射后又回到點(diǎn)P,則光線所經(jīng)過(guò)的路程是( )A.2 B.6 C.3 D.2答案 A解析 由題意知,AB所在直線的方程為x+y-4=0.如圖,點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)為D(4,2),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為C(-2,0),則光線所經(jīng)過(guò)的路程為|CD|=2.三、利用對(duì)稱解決有關(guān)最值問(wèn)題例3 在直線l:x-y-1=0上求兩點(diǎn)P,Q.使得:(1)P到A(4,1)與B(0,4)的距離之差最大;(2)Q到A(4,1)與C(3,0)的距離之和最?。?br/>解 (1)如圖,設(shè)點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′的坐標(biāo)為(a,b),連接BB′,則kBB′·kl=-1,即×1=-1,∴a+b-4=0,①∵BB′的中點(diǎn)在直線l上,∴--1=0,即a-b-6=0.②由①②得∴點(diǎn)B′的坐標(biāo)為(5,-1).于是AB′所在直線的方程為=,即2x+y-9=0.易知||PB|-|PA||=||PB′|-|PA||,當(dāng)且僅當(dāng)P,B′,A三點(diǎn)共線時(shí),||PB′|-|PA||最大.∴聯(lián)立直線l與AB′的方程,解得x=,y=,即直線l與AB′的交點(diǎn)坐標(biāo)為.故點(diǎn)P的坐標(biāo)為.(2)如圖,設(shè)點(diǎn)C關(guān)于l的對(duì)稱點(diǎn)為C′,可求得C′的坐標(biāo)為(1,2),∴AC′所在直線的方程為x+3y-7=0.易知|QA|+|QC|=|QA|+|QC′|,當(dāng)且僅當(dāng)Q,A,C′三點(diǎn)共線時(shí),|QA|+|QC′|最?。?br/>∴聯(lián)立直線AC′與l的方程,解得x=,y=,即直線AC′與l的交點(diǎn)坐標(biāo)為.故點(diǎn)Q的坐標(biāo)為.反思感悟 利用對(duì)稱性求距離的最值問(wèn)題由平面幾何知識(shí)(三角形任意兩邊之和大于第三邊,任意兩邊之差的絕對(duì)值小于第三邊)可知,要解決在直線l上求一點(diǎn),使這點(diǎn)到兩定點(diǎn)A,B的距離之差最大的問(wèn)題,若這兩點(diǎn)A,B位于直線l的同側(cè),則只需求出直線AB的方程,再求它與已知直線的交點(diǎn),即得所求的點(diǎn)的坐標(biāo);若A,B兩點(diǎn)位于直線l的異側(cè),則先求A,B兩點(diǎn)中某一點(diǎn),如A關(guān)于直線l的對(duì)稱點(diǎn)A′,得直線A′B的方程,再求其與直線l的交點(diǎn)即可.對(duì)于在直線l上求一點(diǎn)P,使P到平面上兩點(diǎn)A,B的距離之和最小的問(wèn)題可用類似方法求解.跟蹤訓(xùn)練3 已知兩點(diǎn)A(1,3),B(4,5),動(dòng)點(diǎn)M在直線y=x上運(yùn)動(dòng),則|MA|+|MB|的最小值為_(kāi)_______.答案 解析 根據(jù)題意畫出圖象,如圖,設(shè)點(diǎn)A關(guān)于直線y=x的對(duì)稱點(diǎn)為A′(x,y),所以解得即A′(3,1),連接A′B,則|A′B|即為|MA|+|MB|的最小值,|A′B|==.1.知識(shí)清單:(1)關(guān)于點(diǎn)點(diǎn)、點(diǎn)線、線線的對(duì)稱問(wèn)題.(2)反射問(wèn)題.(3)利用對(duì)稱解決有關(guān)最值問(wèn)題.2.方法歸納:轉(zhuǎn)化化歸、數(shù)形結(jié)合.3.常見(jiàn)誤區(qū):兩條直線關(guān)于直線外一點(diǎn)對(duì)稱,則這兩條直線一定平行,千萬(wàn)不要與兩條相交直線關(guān)于角平分線所在直線對(duì)稱混淆.1.點(diǎn)(3,9)關(guān)于直線x+3y-10=0對(duì)稱的點(diǎn)的坐標(biāo)是( )A.(-1,-3) B.(17,-9)C.(-1,3) D.(-17,9)答案 A解析 設(shè)點(diǎn)(3,9)關(guān)于直線x+3y-10=0對(duì)稱的點(diǎn)的坐標(biāo)為(a,b),則由解得所以該點(diǎn)的坐標(biāo)為(-1,-3).2.直線x-2y+1=0 關(guān)于直線x=1對(duì)稱的直線方程是( )A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=0答案 D解析 在直線 x-2y+1=0上任取兩點(diǎn),不妨取點(diǎn)(1,1),,這兩點(diǎn)關(guān)于直線x=1對(duì)稱的點(diǎn)分別為 (1,1),,兩對(duì)稱點(diǎn)所在直線的方程為 y-1=-(x-1),即 x+2y-3=0.3.若點(diǎn)P(3,4)和點(diǎn)Q(a,b)關(guān)于直線x-y-1=0對(duì)稱,則( )A.a(chǎn)=1,b=-2 B.a(chǎn)=2,b=-1C.a(chǎn)=4,b=3 D.a(chǎn)=5,b=2答案 D解析 由解得4.已知A(3,0),B(0,3),從點(diǎn)P(0,2)射出的光線經(jīng)x軸反射到直線AB上,又經(jīng)過(guò)直線AB反射回到P點(diǎn),則光線所經(jīng)過(guò)的路程為( )A.2 B.6 C.3 D.答案 D解析 由題意知直線AB的方程為x+y=3,點(diǎn)P(0,2)關(guān)于x軸的對(duì)稱點(diǎn)為P1(0,-2),設(shè)點(diǎn)P(0,2)關(guān)于直線AB的對(duì)稱點(diǎn)為P2(a,b),如圖,∴解得∴P2(1,3),∴光線所經(jīng)過(guò)的路程為|PQ|+|QM|+|MP|=|P1P2|==.[分值:100分]單選題每小題5分,共50分1.已知點(diǎn)A(x,5)關(guān)于點(diǎn)(1,y)的對(duì)稱點(diǎn)為(-2,-3),則點(diǎn)P(x,y)到原點(diǎn)的距離是( )A.4 B. C. D.答案 D解析 根據(jù)中點(diǎn)坐標(biāo)公式得解得所以點(diǎn)P的坐標(biāo)為(4,1),則點(diǎn)P(x,y)到原點(diǎn)的距離d==.2.點(diǎn)P(a,b)關(guān)于直線l:x+y+1=0對(duì)稱的點(diǎn)仍在l上,則a+b等于( )A.-1 B.1 C.2 D.0答案 A解析 ∵點(diǎn)P(a,b)關(guān)于直線l:x+y+1=0對(duì)稱的點(diǎn)仍在l上,∴點(diǎn)P(a,b)在直線l上,∴a+b+1=0,即a+b=-1.3.點(diǎn)P(2,5)關(guān)于直線l:x+y+1=0的對(duì)稱點(diǎn)的坐標(biāo)為( )A.(6,-3) B.(3,-6)C.(-6,-3) D.(-6,3)答案 C解析 設(shè)點(diǎn)P(2,5)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為(x,y),則解得故點(diǎn)P(2,5)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為(-6,-3).4.已知直線l:ax+by+c=0與直線l′關(guān)于直線x+y=0對(duì)稱,則l′的方程為( )A.bx+ay-c=0 B.bx-ay+c=0C.bx+ay+c=0 D.bx-ay-c=0答案 A解析 在l的方程中以-x代替y,以-y代替x,即得l′的方程,則l′:a(-y)+b(-x)+c=0,即bx+ay-c=0.5.直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線方程是( )A.2x+3y+7=0 B.3x-2y+2=0C.2x+3y+8=0 D.3x-2y-12=0答案 C解析 ∵直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線斜率不變,∴設(shè)對(duì)稱后的直線方程l′為2x+3y+c=0,又點(diǎn)(1,-1)到兩直線的距離相等,∴=,化簡(jiǎn)得|c-1|=7,解得c=-6 或c=8,∴l(xiāng)′的方程為2x+3y-6=0(舍)或 2x+3y+8=0,即直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線方程是2x+3y+8=0.6.光線從點(diǎn)A(-3,5)射到x軸上,經(jīng)x軸反射后經(jīng)過(guò)點(diǎn)B(2,10),則光線從A到B的路程為( )A.5 B.2 C.5 D.10答案 C解析 點(diǎn)A(-3,5)關(guān)于x軸的對(duì)稱點(diǎn)A′(-3,-5),則光線從A到B的路程即|A′B|的長(zhǎng),|A′B|==5.即光線從A到B的路程為5.7.(5分)如圖,光線從P(a,0)(a>0)出發(fā),經(jīng)過(guò)直線l:x-2y=0反射到Q(b,0),該光線又在Q點(diǎn)被x軸反射,若反射光線恰與直線l平行,且b≥22,則實(shí)數(shù)a的最小值是________.答案 10解析 設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為P′(x0,y0),則解得即P′,因?yàn)樵赒點(diǎn)被x軸反射后的反射光線恰與直線l平行,所以kP′Q=-,即=-,化簡(jiǎn)得a=b,因?yàn)閎≥22,所以a=b≥×22=10,即實(shí)數(shù)a的最小值是10.8.(5分)臺(tái)球運(yùn)動(dòng)中反彈球技法是常見(jiàn)的技巧,其中無(wú)旋轉(zhuǎn)反彈球是最簡(jiǎn)單的技法,主球撞擊目標(biāo)球后,目標(biāo)球撞擊臺(tái)邊之后按照光線反射的方向彈出,想要讓目標(biāo)球沿著理想的方向反彈,就要事先根據(jù)需要確認(rèn)臺(tái)邊的撞擊點(diǎn),同時(shí)做到用力適當(dāng),方向精確,這樣才能通過(guò)反彈來(lái)將目標(biāo)球成功擊入袋中.如圖,現(xiàn)有一目標(biāo)球從點(diǎn)A(-2,3)無(wú)旋轉(zhuǎn)射入,經(jīng)過(guò)x軸(桌邊)上的點(diǎn)P反彈后,經(jīng)過(guò)點(diǎn)B(5,7),則點(diǎn)P的坐標(biāo)為_(kāi)_______.答案 解析 設(shè)P(x,0),A點(diǎn)關(guān)于x軸對(duì)稱的點(diǎn)為A′(-2,-3),則kA′P==,kA′B==,由題意知A′,B,P三點(diǎn)共線,∴kA′P=kA′B,即=,解得x=,故P點(diǎn)的坐標(biāo)為.9.(10分)已知點(diǎn)M(3,5),在直線l:x-2y+2=0和y軸上各找一點(diǎn)P和Q,使△MPQ的周長(zhǎng)最?。?br/>解 由點(diǎn)M(3,5)及直線l,可求得點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)為M1(5,1).同樣可求得點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為M2(-3,5).由M1及M2兩點(diǎn)可得到直線M1M2的方程為x+2y-7=0.解方程組得交點(diǎn)P.令x=0,得M1M2與y軸的交點(diǎn)Q.所以當(dāng)P和Q的坐標(biāo)分別為,時(shí),△MPQ的周長(zhǎng)最?。?br/>10.(12分)已知直線l:x-y+3=0,一束光線從點(diǎn)A(1,2)處射向x軸上一點(diǎn)B,又從點(diǎn)B反射到l上的一點(diǎn)C,最后從點(diǎn)C反射回點(diǎn)A.(1)試判斷由此得到的△ABC的個(gè)數(shù);(7分)(2)求直線BC的方程.(5分)解 (1)如圖,設(shè)B(m,0),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′(1,-2),點(diǎn)B關(guān)于直線x-y+3=0的對(duì)稱點(diǎn)為B′(-3,m+3).根據(jù)光學(xué)知識(shí),知點(diǎn)C在直線A′B上,點(diǎn)C又在直線B′A上,且直線A′B的方程為y=(x-m).由得x=.又直線AB′的方程為y-2=(x-1),由得x=.所以=,即3m2+8m-3=0,解得m=或-3.當(dāng)m=時(shí),符合題意;當(dāng)m=-3時(shí),點(diǎn)B在直線x-y+3=0上,不能構(gòu)成三角形.綜上,符合題意的△ABC只有1個(gè).(2)由(1)得m=,則直線A′B的方程為3x+y-1=0,即直線BC的方程為3x+y-1=0.11.已知點(diǎn)(1,-1)關(guān)于直線l1:y=x的對(duì)稱點(diǎn)為A,設(shè)直線l2經(jīng)過(guò)點(diǎn)A,則當(dāng)點(diǎn)B(2,-1)到直線l2的距離最大時(shí),直線l2的方程為( )A.2x+3y+5=0 B.3x-2y+5=0C.3x+2y+5=0 D.2x-3y+5=0答案 B解析 設(shè)A(a,b),則解得所以A(-1,1).設(shè)點(diǎn)B(2,-1)到直線l2的距離為d,當(dāng)d=|AB|時(shí)取得最大值,此時(shí)直線l2垂直于直線AB,又kl2=-=-=,所以直線l2的方程為y-1=(x+1),即3x-2y+5=0.12.若x,y滿足x+y+1=0,則x2+y2-2x-2y+2的最小值為( )A.2 B. C.3 D.4答案 B解析 原多項(xiàng)式可化為(x-1)2+(y-1)2,其幾何意義為點(diǎn)P(x,y)和點(diǎn)Q(1,1)間距離的平方,且點(diǎn)P(x,y)在直線x+y+1=0上.設(shè)d為點(diǎn)Q到直線x+y+1=0的距離,由|PQ|≥d,得≥,即x2+y2-2x-2y+2≥.故所求的最小值為.13.著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休.”事實(shí)上,有很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決,如:可以轉(zhuǎn)化為平面上點(diǎn)M(x,y)與點(diǎn)N(a,b)間的距離.結(jié)合上述觀點(diǎn),可得f(x)=+的最小值為( )A.2 B.5 C.4 D.8答案 B解析 ∵f(x)=+=+,∴f(x)的幾何意義為點(diǎn)M(x,0)到兩定點(diǎn)A(-2,4)與B(-1,3)的距離之和,設(shè)點(diǎn)A(-2,4)關(guān)于x軸的對(duì)稱點(diǎn)為A′,則A′(-2,-4).要求f(x)的最小值,可轉(zhuǎn)化為求|MA|+|MB|的最小值,利用對(duì)稱思想可知|MA|+|MB|≥|A′B|==5,當(dāng)且僅當(dāng)A′,M,B三點(diǎn)共線時(shí)等號(hào)成立,即f(x)=+的最小值為5.14.唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題——“將軍飲馬”問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊讓馬飲水后再回到軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在位置為B(-1,-4),若將軍從點(diǎn)A(-1,2)處出發(fā),河岸線所在直線方程為x+y=3.則“將軍飲馬”的最短總路程為( )A. B. C.2 D.10答案 C解析 如圖所示,設(shè)點(diǎn)B關(guān)于直線x+y=3的對(duì)稱點(diǎn)為C(a,b),由題意可得解得即C(7,4),在直線x+y=3上取點(diǎn)P,由對(duì)稱性可得|PB|=|PC|,所以|PA|+|PB|=|PA|+|PC|≥|AC|==2,當(dāng)且僅當(dāng)A,P,C三點(diǎn)共線時(shí),等號(hào)成立,因此,“將軍飲馬”的最短總路程為2.15.(5分)若函數(shù)y=的圖象上存在兩點(diǎn)P,Q關(guān)于點(diǎn)(1,0)對(duì)稱,則直線PQ的方程是________.答案 x-4y-1=0解析 根據(jù)題意,設(shè)P,Q,又線段PQ的中點(diǎn)是(1,0),所以整理得所以p,q為方程x2-2x-1=0的根,解得x=1±,所以P,Q或P,Q.由兩點(diǎn)式得直線PQ的方程為x-4y-1=0.16.(13分)已知直線l:x-2y+8=0和兩點(diǎn)A(2,0),B(-2,-4).(1)在直線l上求一點(diǎn)P,使|PA|+|PB|最??;(6分)(2)在直線l上求一點(diǎn)P,使||PB|-|PA||最大.(7分)解 (1)設(shè)A關(guān)于直線l的對(duì)稱點(diǎn)為A′(m,n),則解得故A′(-2,8).因?yàn)镻為直線l上的一點(diǎn),則|PA|+|PB|=|PA′|+|PB|≥|A′B|,當(dāng)且僅當(dāng)B,P,A′三點(diǎn)共線時(shí),|PA|+|PB|取得最小值,為|A′B|,點(diǎn)P即是直線A′B與直線l的交點(diǎn),則得故所求的點(diǎn)P的坐標(biāo)為(-2,3).(2)A,B兩點(diǎn)在直線l的同側(cè),P是直線l上的一點(diǎn),則||PB|-|PA||≤|AB|,當(dāng)且僅當(dāng)A,B,P三點(diǎn)共線時(shí),||PB|-|PA||取得最大值,為|AB|,點(diǎn)P即是直線AB與直線l的交點(diǎn),又直線AB的方程為y=x-2,則得故所求的點(diǎn)P的坐標(biāo)為(12,10).習(xí)題課 對(duì)稱問(wèn)題[學(xué)習(xí)目標(biāo)] 1.學(xué)會(huì)解決點(diǎn)點(diǎn)、點(diǎn)線、線線對(duì)稱問(wèn)題(重點(diǎn)).2.會(huì)應(yīng)用對(duì)稱問(wèn)題解決最值問(wèn)題和反射問(wèn)題(難點(diǎn)).1.點(diǎn)關(guān)于點(diǎn)對(duì)稱點(diǎn)關(guān)于點(diǎn)對(duì)稱的本質(zhì)是中點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)P(x1,y1)關(guān)于點(diǎn)Q(x0,y0)的對(duì)稱點(diǎn)為P′(x2,y2),則根據(jù)中點(diǎn)坐標(biāo)公式,有可得對(duì)稱點(diǎn)P′(x2,y2)的坐標(biāo)為(2x0-x1,2y0-y1).2.點(diǎn)關(guān)于直線對(duì)稱點(diǎn)P(x1,y1)關(guān)于直線l:Ax+By+C=0對(duì)稱的點(diǎn)為P′(x2,y2),連接PP′,交l于M點(diǎn),則l垂直平分PP′,所以PP′⊥l,且M為PP′的中點(diǎn),又因?yàn)镸在直線l上,故可得解出(x2,y2)即可.3.直線關(guān)于點(diǎn)對(duì)稱方法一:在已知直線上任取兩點(diǎn),求出這兩點(diǎn)關(guān)于已知點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo),再由兩點(diǎn)式求出直線方程;方法二:在已知直線上任取一點(diǎn),求出該點(diǎn)關(guān)于已知點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo),再利用兩直線平行,由點(diǎn)斜式求出直線方程.4.直線關(guān)于直線對(duì)稱求直線l1:ax+by+c=0關(guān)于直線l2:dx+ey+f=0(兩直線不平行)的對(duì)稱直線l3.第一步:聯(lián)立l1,l2的方程,算出交點(diǎn)P(x0,y0);第二步:在l1上任找一點(diǎn)(非交點(diǎn))Q(x1,y1),利用點(diǎn)關(guān)于直線l2對(duì)稱算出對(duì)稱點(diǎn)Q′(x2,y2);第三步:利用兩點(diǎn)式寫出l3的方程.5.常見(jiàn)的一些特殊的對(duì)稱點(diǎn)(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為(x,-y),關(guān)于y軸的對(duì)稱點(diǎn)為(-x,y).點(diǎn)(x,y)關(guān)于直線y=x的對(duì)稱點(diǎn)為(y,x),關(guān)于直線y=-x的對(duì)稱點(diǎn)為(-y,-x).點(diǎn)(x,y)關(guān)于直線x=a的對(duì)稱點(diǎn)為(2a-x,y),關(guān)于直線y=b的對(duì)稱點(diǎn)為(x,2b-y).點(diǎn)(x,y)關(guān)于點(diǎn)(a,b)的對(duì)稱點(diǎn)為(2a-x,2b-y).點(diǎn)(x,y)關(guān)于直線x+y=k的對(duì)稱點(diǎn)為(k-y,k-x),關(guān)于直線x-y=k的對(duì)稱點(diǎn)為(k+y,x-k).一、幾類常見(jiàn)的對(duì)稱問(wèn)題例1 已知直線l:y=3x+3,求:(1)點(diǎn)P(4,5)關(guān)于l的對(duì)稱點(diǎn)的坐標(biāo);(2)直線y=x-2關(guān)于l的對(duì)稱直線的方程;(3)直線l關(guān)于點(diǎn)A(3,2)的對(duì)稱直線的方程.反思感悟 對(duì)稱問(wèn)題的解決方法(1)點(diǎn)關(guān)于點(diǎn)的對(duì)稱問(wèn)題通常利用中點(diǎn)坐標(biāo)公式.點(diǎn)P(x,y)關(guān)于Q(a,b)的對(duì)稱點(diǎn)為P′(2a-x,2b-y).(2)直線關(guān)于點(diǎn)的對(duì)稱直線通常用轉(zhuǎn)移法或取特殊點(diǎn)來(lái)求.設(shè)l的方程為Ax+By+C=0(A2+B2≠0)和點(diǎn)P(x0,y0),則l關(guān)于P點(diǎn)的對(duì)稱直線方程為A(2x0-x)+B(2y0-y)+C=0.(3)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),要抓住“垂直”和“平分”.設(shè)P(x0,y0),l:Ax+By+C=0(A2+B2≠0),P關(guān)于l的對(duì)稱點(diǎn)Q可以通過(guò)條件:①PQ⊥l;②PQ的中點(diǎn)在l上來(lái)求得.(4)求直線關(guān)于直線的對(duì)稱直線的問(wèn)題可轉(zhuǎn)化為點(diǎn)關(guān)于直線的對(duì)稱問(wèn)題.跟蹤訓(xùn)練1 已知P(-1,2),M(1,3),直線l:y=2x+1.(1)求點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)R的坐標(biāo);(2)求直線PM關(guān)于直線l對(duì)稱的直線方程.二、光的反射問(wèn)題例2 一束光線從原點(diǎn)O(0,0)出發(fā),經(jīng)過(guò)直線l:8x+6y=25反射后通過(guò)點(diǎn)P(-4,3),求反射光線的方程及光線從O點(diǎn)到達(dá)P點(diǎn)所經(jīng)過(guò)的路程.反思感悟 根據(jù)平面幾何知識(shí)和光學(xué)知識(shí),入射光線、反射光線上對(duì)應(yīng)的點(diǎn)是關(guān)于法線對(duì)稱的.利用點(diǎn)的對(duì)稱關(guān)系可以求解.跟蹤訓(xùn)練2 如圖所示,已知點(diǎn)A(4,0),B(0,4),從點(diǎn)P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射后又回到點(diǎn)P,則光線所經(jīng)過(guò)的路程是( )A.2 B.6 C.3 D.2三、利用對(duì)稱解決有關(guān)最值問(wèn)題例3 在直線l:x-y-1=0上求兩點(diǎn)P,Q.使得:(1)P到A(4,1)與B(0,4)的距離之差最大;(2)Q到A(4,1)與C(3,0)的距離之和最小.反思感悟 利用對(duì)稱性求距離的最值問(wèn)題由平面幾何知識(shí)(三角形任意兩邊之和大于第三邊,任意兩邊之差的絕對(duì)值小于第三邊)可知,要解決在直線l上求一點(diǎn),使這點(diǎn)到兩定點(diǎn)A,B的距離之差最大的問(wèn)題,若這兩點(diǎn)A,B位于直線l的同側(cè),則只需求出直線AB的方程,再求它與已知直線的交點(diǎn),即得所求的點(diǎn)的坐標(biāo);若A,B兩點(diǎn)位于直線l的異側(cè),則先求A,B兩點(diǎn)中某一點(diǎn),如A關(guān)于直線l的對(duì)稱點(diǎn)A′,得直線A′B的方程,再求其與直線l的交點(diǎn)即可.對(duì)于在直線l上求一點(diǎn)P,使P到平面上兩點(diǎn)A,B的距離之和最小的問(wèn)題可用類似方法求解.跟蹤訓(xùn)練3 已知兩點(diǎn)A(1,3),B(4,5),動(dòng)點(diǎn)M在直線y=x上運(yùn)動(dòng),則|MA|+|MB|的最小值為_(kāi)_______.1.知識(shí)清單:(1)關(guān)于點(diǎn)點(diǎn)、點(diǎn)線、線線的對(duì)稱問(wèn)題.(2)反射問(wèn)題.(3)利用對(duì)稱解決有關(guān)最值問(wèn)題.2.方法歸納:轉(zhuǎn)化化歸、數(shù)形結(jié)合.3.常見(jiàn)誤區(qū):兩條直線關(guān)于直線外一點(diǎn)對(duì)稱,則這兩條直線一定平行,千萬(wàn)不要與兩條相交直線關(guān)于角平分線所在直線對(duì)稱混淆.1.點(diǎn)(3,9)關(guān)于直線x+3y-10=0對(duì)稱的點(diǎn)的坐標(biāo)是( )A.(-1,-3) B.(17,-9)C.(-1,3) D.(-17,9)2.直線x-2y+1=0 關(guān)于直線x=1對(duì)稱的直線方程是( )A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=03.若點(diǎn)P(3,4)和點(diǎn)Q(a,b)關(guān)于直線x-y-1=0對(duì)稱,則( )A.a(chǎn)=1,b=-2 B.a(chǎn)=2,b=-1C.a(chǎn)=4,b=3 D.a(chǎn)=5,b=24.已知A(3,0),B(0,3),從點(diǎn)P(0,2)射出的光線經(jīng)x軸反射到直線AB上,又經(jīng)過(guò)直線AB反射回到P點(diǎn),則光線所經(jīng)過(guò)的路程為( )A.2 B.6 C.3 D. 展開(kāi)更多...... 收起↑ 資源列表 第二章 習(xí)題課 對(duì)稱問(wèn)題 課件(共74張ppt)人教A版 選擇性必修第一冊(cè).pptx 第二章 習(xí)題課 對(duì)稱問(wèn)題(學(xué)生版)人教A版 選擇性必修第一冊(cè).docx 第二章 習(xí)題課 對(duì)稱問(wèn)題(答案版)人教A版 選擇性必修第一冊(cè).docx 縮略圖、資源來(lái)源于二一教育資源庫(kù)